cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A112344 Number of partitions of n into perfect powers with each part > 1.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 2, 1, 0, 0, 2, 1, 0, 0, 4, 2, 1, 0, 4, 2, 1, 0, 6, 5, 2, 2, 6, 5, 2, 2, 10, 8, 5, 4, 13, 8, 5, 4, 17, 14, 8, 9, 20, 17, 8, 9, 26, 24, 15, 14, 34, 27, 19, 14, 40, 38, 27, 25, 48, 47, 31, 30, 58, 59, 44, 42, 75, 68, 55, 47, 91, 86, 70, 67, 110, 106, 81, 81, 130, 134, 104
Offset: 1

Views

Author

Reinhard Zumkeller, Sep 05 2005

Keywords

Examples

			a(20) = #{16+4, 8+8+4, 8+4+4+4, 4+4+4+4+4} = 4.
		

Crossrefs

Cf. A078635 (allowing 1).

Programs

  • Maple
    N:= 200: # to get a(1) to a(N)
    Pows:= {seq(seq(k^p, p=2..floor(log[k](N))),k=2..floor(sqrt(N)))}:
    g:= proc(n,q) option remember; if n = 0 then 1 else `+`(seq(procname(n-r,r), r=select(`<=`,Pows,min(q,n)))) fi end proc:
    seq(g(n,n), n=1..N); # Robert Israel, Nov 04 2015
  • Mathematica
    M = 200; (* to get a(1) to a(M) *)
    Pows = Table[k^p, {k, 2, Floor[Sqrt[M]]}, {p, 2, Floor[Log[k, M]]}] // Flatten // Union;
    g[n_, q_] := g[n, q] = If[n == 0, 1, Plus @@ Table[g[n - r, r], {r, Select[Pows, # <= Min[q, n]&]}]];
    Table[g[n, n], {n, 1, M}] (* Jean-François Alcover, Feb 03 2018, translated from Robert Israel's Maple code *)
  • PARI
    leastp(n) = {while(!ispower(n), n--; if (n==0, return (0))); n;}
    a(n) = {pmax = leastp(n); if (! pmax, return (0)); nb = 0; forpart(p=n, nb += (#select(x->ispower(x), Vec(p)) == #p), [4, pmax]); nb;} \\ Michel Marcus, Nov 04 2015

Extensions

Name clarified by Sean A. Irvine, Jan 12 2025