A112352 Triangular numbers that are the sum of two distinct positive triangular numbers.
21, 36, 55, 66, 91, 120, 136, 171, 231, 276, 351, 378, 406, 496, 561, 666, 703, 741, 820, 861, 946, 990, 1035, 1081, 1176, 1225, 1326, 1378, 1431, 1485, 1540, 1596, 1653, 1711, 1770, 1891, 1953, 2016, 2080, 2211, 2278, 2346, 2556, 2701, 2775, 2850, 2926
Offset: 1
Keywords
Examples
36 is a term because 36 = 15 + 21 and these three numbers are distinct triangular numbers (A000217(8) = A000217(5) + A000217(6)).
Links
- Zak Seidov, Table of n, a(n) for n = 1..1000
Crossrefs
Cf. A000217 (triangular numbers), A112353 (triangular numbers that are the sum of three distinct positive triangular numbers), A089982.
Cf. A001110. - Zak Seidov, May 07 2015
Programs
-
Maple
N:= 10^5: # to get all terms <= N S:= {}: for a from 1 to floor(sqrt(1+8*N)/2) do for b from 1 to a-1 do y:= a*(a+1)/2 + b*(b+1)/2; if y > N then break fi; if issqr(8*y+1) then S:= S union {y} fi od od: sort(convert(S,list)); # Robert Israel, May 13 2015
-
Mathematica
Select[Union[Total/@Subsets[Accumulate[Range[100]],{2}]],OddQ[ Sqrt[ 1+8#]]&] (* Harvey P. Dale, Feb 28 2016 *)
Extensions
Offset corrected by Arkadiusz Wesolowski, Aug 06 2012
Comments