cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A112354 Inverse Euler transform of n!. Also the number of sequences of permutations with no global descents which are Lyndon (smallest in lexicographic order of all cyclic shifts of the sequences) where the size of the sequence = sum of sizes of the permutations.

Original entry on oeis.org

1, 1, 4, 17, 92, 572, 4156, 34159, 314368, 3199844, 35703996, 433421495, 5687955724, 80256874912, 1211781887796, 19496946534720, 333041104402860, 6019770246910128, 114794574818830716, 2303332661416242633, 48509766592884311132, 1069983257387132347080
Offset: 1

Views

Author

Mike Zabrocki, Sep 05 2005

Keywords

Examples

			a(3) = 4 because (123), (213), (132) and (1,21) are all Lyndon.
a(4) = 17 because there are 13 permutations with no global descents of size 4 and (1,123), (1,213), (1,132) are all Lyndon.
a(5) = 92 = 71 permutations with no global descents+13 sequences of the form (1,pi) where pi in S_4 with no global descents+(1,1,1,21),(1,21,21),(1,1,123),(1,1,213),(1,1,132),(21,123),(21,213),(21,132).
		

Crossrefs

Programs

  • Maple
    read transforms; EULERi([seq(n!,n=1..30)]);
    # The function EulerInvTransform is defined in A358451.
    a := EulerInvTransform(factorial):
    seq(a(n), n = 1..22); # Peter Luschny, Nov 21 2022
  • Mathematica
    ff = Range[n = 22]!; s = {}; For[i = 1, i <= n, i++, AppendTo[s, i*ff[[i]] - Sum[s[[d]]*ff[[i-d]], {d, i-1}]]]; Table[Sum[If[Divisible[i, d], MoebiusMu[i/d], 0]*s[[d]], {d, 1, i}]/i, {i, n}] (* Jean-François Alcover, Apr 15 2016 *)

Formula

Product_{k>=1} 1/(1-x^k)^{a(k)} = Sum_{n>=0} n! x^n.
a(n) ~ n! * (1 - 1/n - 1/n^2 - 4/n^3 - 23/n^4 - 171/n^5 - 1542/n^6 - 16241/n^7 - 194973/n^8 - 2622610/n^9 - 39027573/n^10 - ...), for coefficients see A113869. - Vaclav Kotesovec, Sep 04 2014, extended Nov 27 2020