cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A112415 a(n) = C(1+n,1) * C(2+n,1) * C(4+n,2).

Original entry on oeis.org

12, 60, 180, 420, 840, 1512, 2520, 3960, 5940, 8580, 12012, 16380, 21840, 28560, 36720, 46512, 58140, 71820, 87780, 106260, 127512, 151800, 179400, 210600, 245700, 285012, 328860, 377580, 431520, 491040, 556512, 628320, 706860, 792540, 885780, 987012, 1096680
Offset: 0

Views

Author

Zerinvary Lajos, Dec 09 2005

Keywords

Examples

			n=0: C(1+0,1)*C(2+0,1)*C(4+0,2) = C(1,1)*C(2,1)*C(4,2) = 1*2*6 = 12;
n=10: C(1+10,1)*C(2+10,1)*C(4+10,2) = C(11,1)*C(12,1)*C(14,2) = 11*12*91 = 12012.
		

Crossrefs

Programs

  • Magma
    [(n+1)*(n+2)*(n+3)*(n+4)/2: n in [0..40]]; // Vincenzo Librandi, Apr 28 2011
  • Mathematica
    Table[(n+1)(n+2)Binomial[4+n,2],{n,0,30}] (* or *) LinearRecurrence[ {5,-10,10,-5,1},{12,60,180,420,840},31] (* Harvey P. Dale, Jul 24 2011 *)

Formula

From R. J. Mathar, Aug 15 2008: (Start)
a(n) = (n+1)*(n+2)*(n+3)*(n+4)/2 = A033486(n+1) = 12*A000332(n+4).
O.g.f.: 12/(1-x)^5. (End)
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5); a(0)=12, a(1)=60, a(2)=180, a(3)=420, a(4)=840. - Harvey P. Dale, Jul 24 2011
From Amiram Eldar, Sep 04 2022: (Start)
Sum_{n>=0} 1/a(n) = 1/9.
Sum_{n>=0} (-1)^n/a(n) = 8*(3*log(2)-2)/9. (End)