A112449 a(n+2) = (a(n+1)^3 + a(n+1))/a(n) with a(0)=1, a(1)=1.
1, 1, 2, 10, 505, 12878813, 4229958765311886322, 5876687051603582015287706866081267480733704277890
Offset: 0
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..10
- S. Fomin and A. Zelevinsky, The Laurent Phenomenon, Advances in Applied Mathematics, 28 (2002), 119-144.
Programs
-
Maple
a[0]:=1; a[1]:=1; f(x):=x^3+x; for n from 0 to 8 do a[n+2]:=simplify(subs(x=a[n+1],f(x))/a[n]) od; s[3]:=ln(10); s[4]:=ln(505); for n from 3 to 10000 do s[n+2]:=evalf(3*s[n+1]+ln(1+exp(-2*s[n+1]))-s[n]): od: print(evalf(ln(s[10002])/(10002))): evalf(ln((3+sqrt(5))/2)); # s[n]=ln(a[n]); ln(s[n])/n converges slowly to 0.962... f:=proc(n) option remember; local i,j,k,t1,t2,t3; if n <= 1 then RETURN(1); fi; (f(n-1)^3+f(n-1))/f(n-2); end; # N. J. A. Sloane
-
Mathematica
nxt[{a_,b_}]:={b,(b^3+b)/a}; NestList[nxt,{1,1},10][[All,1]] (* Harvey P. Dale, Jun 26 2017 *)
-
Ruby
def A(l, m, n) a = Array.new(2 * m, 1) ary = [1] while ary.size < n + 1 i = a[1..-1].inject(:*) + a[m] ** l break if i % a[0] > 0 a = *a[1..-1], i / a[0] ary << a[0] end ary end def A112449(n) A(3, 1, n) end # Seiichi Manyama, Nov 20 2016
Formula
a(1-n) = a(n). - Seiichi Manyama, Nov 20 2016
Comments