A112492 Triangle from inverse scaled Pochhammer symbols.
1, 1, 1, 1, 3, 1, 1, 7, 11, 1, 1, 15, 85, 50, 1, 1, 31, 575, 1660, 274, 1, 1, 63, 3661, 46760, 48076, 1764, 1, 1, 127, 22631, 1217776, 6998824, 1942416, 13068, 1, 1, 255, 137845, 30480800, 929081776, 1744835904, 104587344, 109584, 1, 1, 511, 833375, 747497920, 117550462624, 1413470290176, 673781602752, 7245893376, 1026576, 1
Offset: 0
Examples
Triangle begins: 1; 1, 1; 1, 3, 1; 1, 7, 11, 1; 1, 15, 85, 50, 1; 1, 31, 575, 1660, 274, 1; 1, 63, 3661, 46760, 48076, 1764, 1; 1, 127, 22631, 1217776, 6998824, 1942416, 13068, 1; ... The g.f.s for the rows are illustrated by: Sum_{n>=0} (n+1)^(n-1)*exp((n+1)*x)*(-x)^n/n! = 1; Sum_{n>=0} (n+1)^(n-2)*exp((n+1)*x)*(-x)^n/n! = 1 + 1*x/2!; Sum_{n>=0} (n+1)^(n-3)*exp((n+1)*x)*(-x)^n/n! = 1 + 3*x/2!^2 + 1*x^2/3!; Sum_{n>=0} (n+1)^(n-4)*exp((n+1)*x)*(-x)^n/n! = 1 + 7*x/2!^3 + 11*x^2/3!^2 + 1*x^3/4!; Sum_{n>=0} (n+1)^(n-5)*exp((n+1)*x)*(-x)^n/n! = 1 + 15*x/2!^4 + 85*x^2/3!^3 + 50*x^3/4!^2 + 1*x^4/5!; ... which are derived from a LambertW() identity. - _Paul D. Hanna_, Oct 20 2012
References
- Charles Jordan, Calculus of Finite Differences, Chelsea, 1965.
Links
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
- W. Lang, First 10 rows.
- L. M. Smiley, Completion of a Rational Function Sequence of Carlitz, arXiv:0006106 [math.CO], 2000.
Crossrefs
Row sums give A111885.
Programs
-
Magma
function T(n,k) // T = A112492 if k eq 0 or k eq n then return 1; else return (k+1)^(n-k)*T(n-1,k-1) + Factorial(k)*T(n-1,k); end if; end function; [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 24 2023
-
Mathematica
T[, 0]=1; T[n, m_]:= -m!^(n-m+1)*Sum[(-1)^j*Binomial[m, j]/j^(n-m+ 1), {j,m}]; Table[T[n, m], {n,10}, {m,0,n}]//Flatten (* Jean-François Alcover, Jul 09 2013, from 2nd formula *)
-
PARI
{h(n,recurse=1) = if(recurse == 0, return(1)); ; return( sum(k=0,n, h(k,recurse-1) / (1+k) )); } a(r,c) = h(r-1,c-r) * r!^(c-r) \\ Gottfried Helms, Dec 11 2001
-
PARI
/* From g.f. for column k: */ T(n,k) = (k+1)!^(n-k+1)*polcoeff(prod(j=0,k,1/(j+1-x +x*O(x^(n-k)))),n-k) for(n=0,10,for(k=0,n,print1(T(n,k),", "));print()) \\ Paul D. Hanna, Oct 20 2012
-
PARI
/* From g.f. for row n: */ T(n,k) = (k+1)!^(n-k+1)*polcoeff(sum(j=0,k,(j+1)^(j-n-1)*exp((j+1)*x +x*O(x^k))*(-x)^j/j!),k) for(n=0,10,for(k=0,n,print1(T(n,k),", "));print()) \\ Paul D. Hanna, Oct 20 2012
-
SageMath
def T(n,k): # T = A112492 if (k==0 or k==n): return 1 else: return (k+1)^(n-k)*T(n-1,k-1) + factorial(k)*T(n-1,k) flatten([[T(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jul 24 2023
Formula
G.f. for column m>=1: (x^m)/product(1-m!*x/j, j=1..m).
T(n, m) = -(m!^(n-m+1))*Sum_{j=1..m} (-1)^j*binomial(m, j)/j^(n-m+1), m>=1. T(n, m)=0 if n+1
G.f. of column k: x^k/Product_{j=0..k} (j+1 - x) = Sum_{n>=k} T(n,k)*x^k/(k+1)!^(n-k+1). - Paul D. Hanna, Oct 20 2012
T(n,k) = (k+1)!^(n-k+1) * [x^n] x^k / Product_{j=0..k} (j+1 - x). - Paul D. Hanna, Oct 20 2012
G.f. of row n: Sum_{j>=0} (j+1)^(j-n-1) * exp((j+1)*x) * (-x)^j/j! = Sum_{k>=0} T(n,k)*x^k/(k+1)!^(n-k+1). - Paul D. Hanna, Oct 20 2012
T(n,k) = (k+1)!^(n-k+1) * [x^k] Sum_{j>=0} (j+1)^(j-n-1) * exp((j+1)*x) * (-x)^j/j!. - Paul D. Hanna, Oct 20 2012
T(n,0) = T(n,n) = 1 and T(n,k) = (k+1)^(n-k)*T(n-1,k-1)+(k!)*T(n-1,k) for 0Werner Schulte, Dec 14 2016
Extensions
Terms a(48) onward added by G. C. Greubel, Nov 12 2017
Comments