cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A112492 Triangle from inverse scaled Pochhammer symbols.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 7, 11, 1, 1, 15, 85, 50, 1, 1, 31, 575, 1660, 274, 1, 1, 63, 3661, 46760, 48076, 1764, 1, 1, 127, 22631, 1217776, 6998824, 1942416, 13068, 1, 1, 255, 137845, 30480800, 929081776, 1744835904, 104587344, 109584, 1, 1, 511, 833375, 747497920, 117550462624, 1413470290176, 673781602752, 7245893376, 1026576, 1
Offset: 0

Views

Author

Wolfdieter Lang, Sep 12 2005

Keywords

Comments

This expansion is based on the partial fraction identity: 1/Product_{j=1..m}(x+j) = (1 + Sum_{j=1..m} (-1)^j*binomial(m,j) * x/(x+j))/m!, e.g., p. 37 of the Jordan reference.
Another version of this triangle (without a column of 1's) is A008969.
The column sequences are, for m=1..10: A000012 (powers of 1), A000225, A001240, A001241, A001242, A111886-A111888.
From Gottfried Helms, Dec 11 2001: (Start)
The triangle occurs as U-factor in the LDU-decomposition of the matrix M defined by m(r,c) = 1/(1+r)^c (r, c beginning at 0).
Then
a(r,c) = m(r,c) * (1+r)!^(c-r).
An explicit expansion based on this can be made by defining a "recursive harmonic number" (rhn). (This representation is just a heuristic pattern-interpretation, no analytic proof yet available).
Consider
h(k,0)=1 for k>0 as rhn of order zero(0).
Then consider
h(1,1)=1*h(1,0)
h(2,1)=1*h(1,0) + 1/2*h(2,0)
h(3,1)=1*h(1,0) + 1/2*h(2,0) + 1/3*h(3,0) = h(2,1)+1/3*h(3,0)
...
and recursively
h(1,r)=1*h(1,r-1)
h(2,r)=1*h(1,r-1) + 1/2*h(2,r-1)
h(3,r)=1*h(1,r-1) + 1/2*h(2,r-1) + 1/3*h(3,r-1) = h(2,r)+1/3*h(3,r-1)
...
h(k,r)=h(k-1,r)+1/k*h(k,r-1)
then the upper triangular triangle A:=a(r,c) for c-r>0
a(r,c) = h(r,c-r) *(1+r)!^(c-r).
(End)

Examples

			Triangle begins:
  1;
  1,   1;
  1,   3,     1;
  1,   7,    11,       1;
  1,  15,    85,      50,       1;
  1,  31,   575,    1660,     274,       1;
  1,  63,  3661,   46760,   48076,    1764,     1;
  1, 127, 22631, 1217776, 6998824, 1942416, 13068,    1; ...
The g.f.s for the rows are illustrated by:
Sum_{n>=0} (n+1)^(n-1)*exp((n+1)*x)*(-x)^n/n! = 1;
Sum_{n>=0} (n+1)^(n-2)*exp((n+1)*x)*(-x)^n/n! = 1 + 1*x/2!;
Sum_{n>=0} (n+1)^(n-3)*exp((n+1)*x)*(-x)^n/n! = 1 + 3*x/2!^2 + 1*x^2/3!;
Sum_{n>=0} (n+1)^(n-4)*exp((n+1)*x)*(-x)^n/n! = 1 + 7*x/2!^3 + 11*x^2/3!^2 + 1*x^3/4!;
Sum_{n>=0} (n+1)^(n-5)*exp((n+1)*x)*(-x)^n/n! = 1 + 15*x/2!^4 + 85*x^2/3!^3 + 50*x^3/4!^2 + 1*x^4/5!; ...
which are derived from a LambertW() identity. - _Paul D. Hanna_, Oct 20 2012
		

References

  • Charles Jordan, Calculus of Finite Differences, Chelsea, 1965.

Crossrefs

Row sums give A111885.

Programs

  • Magma
    function T(n,k) // T = A112492
      if k eq 0 or k eq n then return 1;
      else return (k+1)^(n-k)*T(n-1,k-1) + Factorial(k)*T(n-1,k);
      end if;
    end function;
    [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 24 2023
    
  • Mathematica
    T[, 0]=1; T[n, m_]:= -m!^(n-m+1)*Sum[(-1)^j*Binomial[m, j]/j^(n-m+ 1), {j,m}]; Table[T[n, m], {n,10}, {m,0,n}]//Flatten (* Jean-François Alcover, Jul 09 2013, from 2nd formula *)
  • PARI
    {h(n,recurse=1) = if(recurse == 0, return(1)); ;
    return( sum(k=0,n, h(k,recurse-1) / (1+k) )); }
    a(r,c) = h(r-1,c-r) * r!^(c-r) \\ Gottfried Helms, Dec 11 2001
    
  • PARI
    /* From g.f. for column k: */
    T(n,k) = (k+1)!^(n-k+1)*polcoeff(prod(j=0,k,1/(j+1-x +x*O(x^(n-k)))),n-k)
    for(n=0,10,for(k=0,n,print1(T(n,k),", "));print()) \\ Paul D. Hanna, Oct 20 2012
    
  • PARI
    /* From g.f. for row n: */
    T(n,k) = (k+1)!^(n-k+1)*polcoeff(sum(j=0,k,(j+1)^(j-n-1)*exp((j+1)*x +x*O(x^k))*(-x)^j/j!),k)
    for(n=0,10,for(k=0,n,print1(T(n,k),", "));print()) \\ Paul D. Hanna, Oct 20 2012
    
  • SageMath
    def T(n,k): # T = A112492
        if (k==0 or k==n): return 1
        else: return (k+1)^(n-k)*T(n-1,k-1) + factorial(k)*T(n-1,k)
    flatten([[T(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jul 24 2023

Formula

G.f. for column m>=1: (x^m)/product(1-m!*x/j, j=1..m).
T(n, m) = -(m!^(n-m+1))*Sum_{j=1..m} (-1)^j*binomial(m, j)/j^(n-m+1), m>=1. T(n, m)=0 if n+1
G.f. of column k: x^k/Product_{j=0..k} (j+1 - x) = Sum_{n>=k} T(n,k)*x^k/(k+1)!^(n-k+1). - Paul D. Hanna, Oct 20 2012
T(n,k) = (k+1)!^(n-k+1) * [x^n] x^k / Product_{j=0..k} (j+1 - x). - Paul D. Hanna, Oct 20 2012
G.f. of row n: Sum_{j>=0} (j+1)^(j-n-1) * exp((j+1)*x) * (-x)^j/j! = Sum_{k>=0} T(n,k)*x^k/(k+1)!^(n-k+1). - Paul D. Hanna, Oct 20 2012
T(n,k) = (k+1)!^(n-k+1) * [x^k] Sum_{j>=0} (j+1)^(j-n-1) * exp((j+1)*x) * (-x)^j/j!. - Paul D. Hanna, Oct 20 2012
T(n,0) = T(n,n) = 1 and T(n,k) = (k+1)^(n-k)*T(n-1,k-1)+(k!)*T(n-1,k) for 0Werner Schulte, Dec 14 2016

Extensions

Terms a(48) onward added by G. C. Greubel, Nov 12 2017