A110774
Copies of 1 and 3 alternately such that every partial concatenation is a prime.
Original entry on oeis.org
11, 3, 11, 33, 1111111, 3333333333, 11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111
Offset: 1
11, 113, 11311, etc. are primes.
Cf.
A110775,
A110776,
A110777,
A110778,
A112534,
A110780,
A110781,
A110782,
A110783,
A110788,
A110789.
The next term is too large to include.
A110776
Copies of 1 and 7 alternately such that every partial concatenation is a prime.
Original entry on oeis.org
11, 777, 11, 777777, 111111111, 7777777777777777777777777, 111111111, 777
Offset: 1
11, 11777, 1177711, ... are all prime.
Cf.
A110774,
A110775,
A110777,
A110778,
A112534,
A110780,
A110781,
A110782,
A110783,
A110788,
A110789.
The next term has 762 1's and is too large to include.
A110778
Copies of 3 and 7 alternately such that every partial concatenation is a prime.
Original entry on oeis.org
3, 7, 3, 777, 333, 777777777777777777777, 3333333, 7777777777777777777777777777777, 33333
Offset: 1
3, 37, 373, 373777, ... are all prime.
-
id[n_]:=IntegerDigits[n]; f[x_,y_]:=FromDigits[Flatten[Append[{x},y]]]; a[x_,y_]:=NestWhile[f[id[#],y]&,f[id[x],y],!PrimeQ[#]&]; d[x_, y_]:=x-FromDigits[PadRight[id[y],Length[id[x]]]]; t={3}; x=3; Do[y=a[x,7]; AppendTo[t,d[y,x]]; x=a[y,3]; AppendTo[t,d[x,y]],{n,4}]; t (* Jayanta Basu, May 20 2013 *)
The next term has 480 7's and is too large to include.
Original entry on oeis.org
2, 1, 2, 2, 7, 10, 101, 196, 9, 550, 6150, 4532, 3249, 12360, 8719
Offset: 1
Cf.
A110774,
A110776,
A110777,
A110778,
A112534,
A110780,
A110781,
A110782,
A110783,
A110788,
A110789
-
from sympy import isprime
from itertools import count, islice
def agen(): # generator of terms
s = ""
while True:
for d in "13":
for k in count(1):
if isprime(int(s+d*k)): break
yield k
s += d*k
print(list(islice(agen(), 10))) # Michael S. Branicky, Aug 23 2022
Original entry on oeis.org
2, 3, 2, 6, 9, 25, 9, 3, 762, 354, 248, 2181, 606, 1941, 6423, 11871
Offset: 1
Cf.
A110774,
A110775,
A110776,
A110778,
A112534,
A110780,
A110781,
A110782,
A110783,
A110788,
A110789
-
from sympy import isprime
from itertools import count, islice
def agen(): # generator of terms
s = ""
while True:
for d in "17":
for k in count(1):
if isprime(int(s+d*k)): break
yield k
s += d*k
print(list(islice(agen(), 11))) # Michael S. Branicky, Aug 23 2022
A112533
Expansion of (4+49*x+108*x^2-432*x^3+54675*x^5)/((1-27*x^2)*(1-6*x+27*x^2)*(1+6*x+27*x^2)).
Original entry on oeis.org
4, 49, 144, 9, 324, 42849, 46656, 1347921, 3175524, 1896129, 23619600, 532917225, 359254116, 30866624721, 59997563136, 185622243921, 917583904836, 4659420127761, 750046066704, 604376350260489, 964709560931076
Offset: 0
-
I:=[4,49,144,9,324,42849]; [n le 6 select I[n] else 9*(Self(n-2) - 27*Self(n-4) +2187*Self(n-6)): n in [1..31]]; // G. C. Greubel, Jan 12 2022
-
a[n_]:= With[{p=Sqrt[27]}, Simplify[(p^n/12)*(9*((2+p) + (-1)^n*(2-p)) + (49 - 37*(-1)^n)*ChebyshevU[n, 3/p] -(153-261*(-1)^n)/p*ChebyshevU[n-1, 3/p] )]];
Table[a[n], {n, 0, 30}] (* G. C. Greubel, Jan 12 2022 *)
-
Vec((4 + 49*x + 108*x^2 - 432*x^3 + 54675*x^5) / ((1 - 6*x + 27*x^2)*(1 - 27*x^2)*(1 + 6*x + 27*x^2)) + O(x^20)) \\ Colin Barker, May 06 2019
-
U=chebyshev_U
p=sqrt(27)
def A112533(n): return (p^n/12)*( 9*((2+p) + (-1)^n*(2-p)) + (49 - 37*(-1)^n)*U(n, 3/p) - (1/p)*(153 - 261*(-1)^n)*U(n-1, 3/p) )
[A112533(n) for n in (0..30)] # G. C. Greubel, Jan 12 2022
Showing 1-6 of 6 results.
Comments