cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A110774 Copies of 1 and 3 alternately such that every partial concatenation is a prime.

Original entry on oeis.org

11, 3, 11, 33, 1111111, 3333333333, 11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111
Offset: 1

Views

Author

Amarnath Murthy, Aug 12 2005

Keywords

Examples

			11, 113, 11311, etc. are primes.
		

Crossrefs

Extensions

The next term is too large to include.
Corrected and extended by Joshua Zucker, Jan 11 2006

A110776 Copies of 1 and 7 alternately such that every partial concatenation is a prime.

Original entry on oeis.org

11, 777, 11, 777777, 111111111, 7777777777777777777777777, 111111111, 777
Offset: 1

Views

Author

Amarnath Murthy, Aug 12 2005

Keywords

Examples

			11, 11777, 1177711, ... are all prime.
		

Crossrefs

Extensions

Corrected and extended by Joshua Zucker, Jan 11 2006
The next term has 762 1's and is too large to include.

A110778 Copies of 3 and 7 alternately such that every partial concatenation is a prime.

Original entry on oeis.org

3, 7, 3, 777, 333, 777777777777777777777, 3333333, 7777777777777777777777777777777, 33333
Offset: 1

Views

Author

Amarnath Murthy, Aug 12 2005

Keywords

Examples

			3, 37, 373, 373777, ... are all prime.
		

Crossrefs

Cf. A112534. - Sean A. Irvine, Mar 21 2010

Programs

  • Mathematica
    id[n_]:=IntegerDigits[n]; f[x_,y_]:=FromDigits[Flatten[Append[{x},y]]]; a[x_,y_]:=NestWhile[f[id[#],y]&,f[id[x],y],!PrimeQ[#]&]; d[x_, y_]:=x-FromDigits[PadRight[id[y],Length[id[x]]]]; t={3}; x=3; Do[y=a[x,7]; AppendTo[t,d[y,x]]; x=a[y,3]; AppendTo[t,d[x,y]],{n,4}]; t (* Jayanta Basu, May 20 2013 *)

Extensions

More terms from Joshua Zucker, Jan 11 2006
The next term has 480 7's and is too large to include.

A110775 Number of digits in A110774(n).

Original entry on oeis.org

2, 1, 2, 2, 7, 10, 101, 196, 9, 550, 6150, 4532, 3249, 12360, 8719
Offset: 1

Views

Author

Amarnath Murthy, Aug 12 2005

Keywords

Crossrefs

Programs

  • Python
    from sympy import isprime
    from itertools import count, islice
    def agen(): # generator of terms
        s = ""
        while True:
            for d in "13":
                for k in count(1):
                    if isprime(int(s+d*k)): break
                yield k
                s += d*k
    print(list(islice(agen(), 10))) # Michael S. Branicky, Aug 23 2022

Extensions

Corrected and extended by Joshua Zucker, Jan 11 2006
a(11) from Michael S. Branicky, Aug 23 2022
a(12)-a(13) from Michael S. Branicky, May 29 2023
a(14)-a(15) from Michael S. Branicky, Nov 19 2024

A110777 Number of digits in A110776(n).

Original entry on oeis.org

2, 3, 2, 6, 9, 25, 9, 3, 762, 354, 248, 2181, 606, 1941, 6423, 11871
Offset: 1

Views

Author

Amarnath Murthy, Aug 12 2005

Keywords

Crossrefs

Programs

  • Python
    from sympy import isprime
    from itertools import count, islice
    def agen(): # generator of terms
        s = ""
        while True:
            for d in "17":
                for k in count(1):
                    if isprime(int(s+d*k)): break
                yield k
                s += d*k
    print(list(islice(agen(), 11))) # Michael S. Branicky, Aug 23 2022

Extensions

a(7)-a(9) from Joshua Zucker, Jan 11 2006
a(10)-a(11) from Sean A. Irvine, Mar 22 2010
a(12)-a(14) from Michael S. Branicky, Aug 23 2022
a(15) from Michael S. Branicky, May 29 2023
a(16) from Michael S. Branicky, Nov 20 2024

A112533 Expansion of (4+49*x+108*x^2-432*x^3+54675*x^5)/((1-27*x^2)*(1-6*x+27*x^2)*(1+6*x+27*x^2)).

Original entry on oeis.org

4, 49, 144, 9, 324, 42849, 46656, 1347921, 3175524, 1896129, 23619600, 532917225, 359254116, 30866624721, 59997563136, 185622243921, 917583904836, 4659420127761, 750046066704, 604376350260489, 964709560931076
Offset: 0

Views

Author

Creighton Dement, Sep 11 2005

Keywords

Comments

A floretion-generated sequence of squares.

Crossrefs

Programs

  • Magma
    I:=[4,49,144,9,324,42849]; [n le 6 select I[n] else 9*(Self(n-2) - 27*Self(n-4) +2187*Self(n-6)): n in [1..31]]; // G. C. Greubel, Jan 12 2022
    
  • Mathematica
    a[n_]:= With[{p=Sqrt[27]}, Simplify[(p^n/12)*(9*((2+p) + (-1)^n*(2-p)) + (49 - 37*(-1)^n)*ChebyshevU[n, 3/p] -(153-261*(-1)^n)/p*ChebyshevU[n-1, 3/p] )]];
    Table[a[n], {n, 0, 30}] (* G. C. Greubel, Jan 12 2022 *)
  • PARI
    Vec((4 + 49*x + 108*x^2 - 432*x^3 + 54675*x^5) / ((1 - 6*x + 27*x^2)*(1 - 27*x^2)*(1 + 6*x + 27*x^2)) + O(x^20)) \\ Colin Barker, May 06 2019
    
  • Sage
    U=chebyshev_U
    p=sqrt(27)
    def A112533(n): return (p^n/12)*( 9*((2+p) + (-1)^n*(2-p)) + (49 - 37*(-1)^n)*U(n, 3/p) - (1/p)*(153 - 261*(-1)^n)*U(n-1, 3/p) )
    [A112533(n) for n in (0..30)] # G. C. Greubel, Jan 12 2022

Formula

a(n) = 9*a(n-2) - 243*a(n-4) + 19683*a(n-6) for n>5. - Colin Barker, May 06 2019
a(n) = (p^n/12)*( 9*((2+p) + (-1)^n*(2-p)) + (49 - 37*(-1)^n)*ChebyshevU(n, 3/p) - (1/p)*(153 - 261*(-1)^n)*ChebyshevU(n-1, 3/p) ), where p = sqrt(27). - G. C. Greubel, Jan 12 2022
Showing 1-6 of 6 results.