cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A112553 Expansion of 1/( (1+x^2)*(1-x+x^2) ).

Original entry on oeis.org

1, 1, -1, -2, 0, 2, 1, -1, -1, 0, 0, 0, 1, 1, -1, -2, 0, 2, 1, -1, -1, 0, 0, 0, 1, 1, -1, -2, 0, 2, 1, -1, -1, 0, 0, 0, 1, 1, -1, -2, 0, 2, 1, -1, -1, 0, 0, 0, 1, 1, -1, -2, 0, 2, 1, -1, -1, 0, 0, 0, 1, 1, -1, -2, 0, 2, 1, -1, -1, 0, 0, 0
Offset: 0

Views

Author

Paul Barry, Sep 13 2005

Keywords

Comments

Row sums of A112552.

Examples

			G.f. = 1 + x - x^2 - 2*x^3 + 2*x^5 + x^6 - x^7 - x^8 + x^12 + x^13 - x^14 - 2*x^15 + ... - _Michael Somos_, Feb 15 2024
		

Crossrefs

Programs

  • Mathematica
    Join[{1}, PadRight[{}, 120, {1,-1,-2,0,2,1,-1,-1,0,0,0,1}]] (* G. C. Greubel, Jan 13 2022 *)
    a[ n_] := {1, 1, -1, -2, 0, 2, 1, -1, -1, 0, 0, 0}[[1 + Mod[n, 12]]]; (* Michael Somos, Feb 15 2024 *)
  • PARI
    {a(n) = [1, 1, -1, -2, 0, 2, 1, -1, -1, 0, 0, 0][1 + n%12]}; /* Michael Somos, Feb 15 2024 */

Formula

a(n) = (1/4)*Sum_{k=0..n} (-1)^floor((n-k)/2)*Sum_{j=0..n} (1+(-1)^(n-j))*(1+(-1)^(j-k)) *binomial((j+k)/2, k).
From G. C. Greubel, Jan 13 2022: (Start)
a(n) = Sum_{k=0..n} (-1)^floor((n-k)/2)*((1 + (-1)^(n+k))/2)*binomial((n+k+2)/2, k+1).
a(n + 12) = a(n). (End)
a(n) = -a(-4-n) for all n in Z. - Michael Somos, Feb 15 2024