cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A112552 A modified Chebyshev transform of the second kind.

Original entry on oeis.org

1, 0, 1, -2, 0, 1, 0, -3, 0, 1, 3, 0, -4, 0, 1, 0, 6, 0, -5, 0, 1, -4, 0, 10, 0, -6, 0, 1, 0, -10, 0, 15, 0, -7, 0, 1, 5, 0, -20, 0, 21, 0, -8, 0, 1, 0, 15, 0, -35, 0, 28, 0, -9, 0, 1, -6, 0, 35, 0, -56, 0, 36, 0, -10, 0, 1, 0, -21, 0, 70, 0, -84, 0, 45, 0, -11, 0, 1, 7, 0, -56, 0, 126, 0, -120, 0, 55, 0, -12, 0, 1
Offset: 0

Views

Author

Paul Barry, Sep 13 2005

Keywords

Comments

Row sums are A112553.
Inverse is A112554.
Riordan array product (1/(1+x^2), x)*(1/(1+x^2), x/(1+x^2)).

Examples

			Triangle begins as:
   1;
   0,   1;
  -2,   0,   1;
   0,  -3,   0,   1;
   3,   0,  -4,   0,   1;
   0,   6,   0,  -5,   0,   1;
  -4,   0,  10,   0,  -6,   0,  1;
   0, -10,   0,  15,   0,  -7,  0,  1;
   5,   0, -20,   0,  21,   0, -8,  0,   1;
   0,  15,   0, -35,   0,  28,  0, -9,   0,   1;
  -6,   0,  35,   0, -56,   0, 36,  0, -10,   0, 1;
   0, -21,   0,  70,   0, -84,  0, 45,   0, -11, 0, 1;
		

Crossrefs

Programs

  • Magma
    [(-1)^Floor((n-k)/2)*((1+(-1)^(n+k))/2)*Binomial(Floor((n+k+2)/2), k+1): k in [0..n], n in [0..15]]; // G. C. Greubel, Jan 13 2022
    
  • Mathematica
    Table[(-1)^Floor[(n-k)/2]*((1+(-1)^(n+k))/2)*Binomial[(n+k+2)/2, k+1], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Jan 13 2022 *)
  • Sage
    flatten([[(-1)^floor((n-k)/2)*((1+(-1)^(n+k))/2)*binomial((n+k+2)/2, k+1) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Jan 13 2022

Formula

Riordan array (1/(1+x^2)^2, x/(1+x^2)).
T(n, k) = (-1)^floor((n-k)/2)*Sum_{j=0..n} (1+(-1)^(n-j))*(1+(-1)^(j-k))*binomial((j+k)/2, k)/4.
Unsigned triangle = A128174 * A149310, as infinite lower triangular matrices, with row sums A052952: (1, 1, 3, 4, 8, 12, 21, 33, ...). - Gary W. Adamson, Oct 28 2007
T(n, k) = (-1)^floor((n-k)/2)*((1 + (-1)^(n+k))/2)*binomial((n+k+2)/2, k+1). - G. C. Greubel, Jan 13 2022
T(n,k) = A049310(n+1,k+1) . - R. J. Mathar, Feb 07 2024

A112554 Riordan array (c(x^2)^2, x*c(x^2)), c(x) the g.f. of A000108.

Original entry on oeis.org

1, 0, 1, 2, 0, 1, 0, 3, 0, 1, 5, 0, 4, 0, 1, 0, 9, 0, 5, 0, 1, 14, 0, 14, 0, 6, 0, 1, 0, 28, 0, 20, 0, 7, 0, 1, 42, 0, 48, 0, 27, 0, 8, 0, 1, 0, 90, 0, 75, 0, 35, 0, 9, 0, 1, 132, 0, 165, 0, 110, 0, 44, 0, 10, 0, 1, 0, 297, 0, 275, 0, 154, 0, 54, 0, 11, 0, 1, 429, 0, 572, 0, 429, 0, 208, 0, 65, 0, 12, 0, 1
Offset: 0

Views

Author

Paul Barry, Sep 13 2005

Keywords

Comments

Inverse of A112552.
The n-th row polynomial (in descending powers of x) is equal to the n-th degree Taylor polynomial of the polynomial function (1 - x^4)*(1 + x^2)^n about 0. For example, when n = 6, (1 - x^4)*(1 + x^2)^6 = 1 + 6*x^2 + 14*x^4 + 14*x^6 + O(x^8). - Peter Bala, Feb 19 2018

Examples

			Triangle begins
   1;
   0, 1;
   2, 0,  1;
   0, 3,  0, 1;
   5, 0,  4, 0, 1;
   0, 9,  0, 5, 0, 1;
  14, 0, 14, 0, 6, 0, 1;
		

Crossrefs

Row sums A037952, matrix inverse A112552.
Cf. A000108, A037952 (row sums), A112552, A112553.

Programs

  • Magma
    A112554:= func< n,k | ((1+(-1)^(n-k))/2)*(Binomial(n, Floor((n-k)/2)) - Binomial(n, Floor((n-k-4)/2))) >;
    [A112554(n,k): k in [0..n], n in [0..15]]; // G. C. Greubel, Jan 13 2022
  • Maple
    seq(seq((1 + (-1)^(n-k))/2*( binomial(n, floor((n - k)/2)) - binomial(n, floor((n - k - 4)/2 )) ), k = 0..n), n = 0..10); # Peter Bala, Feb 19 2018
  • Mathematica
    T[n_, k_] := (1 + (-1)^(n-k))/2 (Binomial[n, Floor[(n-k)/2]] - Binomial[n, Floor[(n-k-4)/2]]);
    Table[T[n, k], {n, 0, 12}, {k, 0, n}] (* Jean-François Alcover, Jun 13 2019 *)
  • Sage
    # Algorithm of L. Seidel (1877)
    # Prints the first n rows of a signed version of the triangle.
    def Signed_A112554_triangle(n) :
        D = [0]*(n+4); D[1] = 1
        b = False; h = 2
        for i in range(2*n+2) :
            if b :
                for k in range(h,0,-1) : D[k] += D[k-1]
                h += 1
            else :
                for k in range(1,h, 1) : D[k] -= D[k+1]
            b = not b
            if b and i > 0 : print([D[z] for z in (2..h-1)])
    Signed_A112554_triangle(13) # Peter Luschny, May 01 2012
    

Formula

Sum_{k=0..n} T(n, k) = binomial(n+1, floor(n/2)) = A037952(n+1).
T(n, k) = ((1 + (-1)^(n-k))/2)*binomial(n, floor((n-k)/2)) - binomial(n, floor((n-k-4)/2 )). - Peter Bala, Feb 19 2018

A098554 G.f.: x*(1-x^2)/((1+x^2)*(1+x+x^2)).

Original entry on oeis.org

0, 1, -1, -2, 3, 1, -4, 1, 3, -2, -1, 1, 0, 1, -1, -2, 3, 1, -4, 1, 3, -2, -1, 1, 0, 1, -1, -2, 3, 1, -4, 1, 3, -2, -1, 1, 0, 1, -1, -2, 3, 1, -4, 1, 3, -2, -1, 1, 0, 1, -1, -2, 3, 1, -4, 1, 3, -2, -1, 1, 0, 1, -1, -2, 3, 1, -4, 1, 3, -2, -1, 1, 0, 1, -1, -2, 3, 1, -4, 1, 3, -2, -1, 1, 0, 1, -1, -2, 3, 1, -4, 1, 3, -2, -1, 1, 0, 1, -1, -2, 3, 1, -4, 1, 3, -2
Offset: 0

Views

Author

N. J. A. Sloane, Oct 26 2004

Keywords

Programs

  • Magma
    I:=[0,1,-1,-2]; [n le 4 select I[n] else -Self(n-1) - 2*Self(n-2) -Self(n-3) - Self(n-4): n in [1..30]]; // G. C. Greubel, Jan 17 2018
  • Mathematica
    CoefficientList[Series[x*(1-x^2)/((1+x^2)*(1+x+x^2)),{x,0,110}],x] (* or *) LinearRecurrence[{-1,-2,-1,-1},{0,1,-1,-2},110] (* Harvey P. Dale, Jan 16 2016 *)
  • PARI
    x='x+O('x^30); concat([0], Vec(x*(1-x^2)/((1+x^2)*(1+x+x^2)))) \\ G. C. Greubel, Jan 17 2018
    

Formula

Let b(n) = Sum_{k=0..floor(n/2)} binomial(n-k, k)*(0^(n-2k)-(-1)^(n-2k)). Then a(n) = b(n) - b(n-2), or a(n) = Sum_{j=0..n} b(n-j)*(binomial(1, j/2)*(-1)^(j/2)*(1+(-1)^j)/2). The g.f. is obtained from the g.f. x/(1+x) of 0^n-(-1)^n by applying the transformation G(x)->((1-x^2)/(1+x^2))G(x/(1+x^2)). - Paul Barry, Oct 26 2004
a(n) = (-1)^n*(A112553(n-1) - A112553(n-3)). - R. J. Mathar, Sep 27 2014
a(0)=0, a(1)=1, a(2)=-1, a(3)=-2, a(n) = a(n-1) - 2*a(n-2) - a(n-3) - a(n-4). - Harvey P. Dale, Jan 16 2016

A247918 Expansion of (1 + x) / ((1 - x^4) * (1 + x^4 - x^5)) in powers of x.

Original entry on oeis.org

1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 2, 0, -1, 2, -1, 2, 1, -2, 4, -3, 1, 4, -5, 7, -4, -2, 10, -12, 11, -1, -11, 22, -23, 13, 11, -33, 45, -35, 3, 44, -78, 81, -37, -41, 122, -158, 119, 4, -163, 281, -276, 115, 167, -443, 558, -391, -52, 611, -1000, 949
Offset: 0

Views

Author

Michael Somos, Sep 26 2014

Keywords

Examples

			G.f. = 1 + x + x^5 + x^6 + x^8 + x^11 + 2*x^13 - x^15 + 2*x^16 - x^17 + ...
		

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 70); Coefficients(R!((1 + x)/((1-x^4)*(1+x^4-x^5)))); // G. C. Greubel, Aug 04 2018
    
  • Mathematica
    CoefficientList[Series[(1+x)/((1-x^4)(1+x^4-x^5)), {x, 0, 100}], x] (* Vincenzo Librandi, Sep 27 2014 *)
  • PARI
    {a(n) = if( n<0, n=-8-n; polcoeff( -1/((1-x)*(1-x+x^2)*(1+x^2)*(1 - x^2 - x^3)) + x * O(x^n), n), polcoeff( 1/((1-x)*(1-x+x^2)*(1+x^2)*(1+x-x^3)) + x * O(x^n), n))};
    
  • SageMath
    def A247918_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1+x)/((1-x^4)*(1+x^4-x^5)) ).list()
    A247918_list(70) # G. C. Greubel, Aug 08 2022

Formula

G.f.: 1 / ((1 - x) * (1 - x + x^2) * (1 + x^2) * (1 + x - x^3)).
a(n) = a(n+1) + a(n+5) - mod(floor((n-1)/2), 2) for all n in Z.
a(n) = -A247907(-8-n) for all n in Z.
Convolution of A077905 and A112553.
a(n) = (35 + 7*(A056594(n) + 3*A056594(n-1)) + 10*(3*A010892(n) - A010892(n-1)) - 2*(A176971(n) + 4*A172971(n-1) + 12*A176971(n-2)))/70. - G. C. Greubel, Aug 08 2022
Showing 1-4 of 4 results.