cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A112552 A modified Chebyshev transform of the second kind.

Original entry on oeis.org

1, 0, 1, -2, 0, 1, 0, -3, 0, 1, 3, 0, -4, 0, 1, 0, 6, 0, -5, 0, 1, -4, 0, 10, 0, -6, 0, 1, 0, -10, 0, 15, 0, -7, 0, 1, 5, 0, -20, 0, 21, 0, -8, 0, 1, 0, 15, 0, -35, 0, 28, 0, -9, 0, 1, -6, 0, 35, 0, -56, 0, 36, 0, -10, 0, 1, 0, -21, 0, 70, 0, -84, 0, 45, 0, -11, 0, 1, 7, 0, -56, 0, 126, 0, -120, 0, 55, 0, -12, 0, 1
Offset: 0

Views

Author

Paul Barry, Sep 13 2005

Keywords

Comments

Row sums are A112553.
Inverse is A112554.
Riordan array product (1/(1+x^2), x)*(1/(1+x^2), x/(1+x^2)).

Examples

			Triangle begins as:
   1;
   0,   1;
  -2,   0,   1;
   0,  -3,   0,   1;
   3,   0,  -4,   0,   1;
   0,   6,   0,  -5,   0,   1;
  -4,   0,  10,   0,  -6,   0,  1;
   0, -10,   0,  15,   0,  -7,  0,  1;
   5,   0, -20,   0,  21,   0, -8,  0,   1;
   0,  15,   0, -35,   0,  28,  0, -9,   0,   1;
  -6,   0,  35,   0, -56,   0, 36,  0, -10,   0, 1;
   0, -21,   0,  70,   0, -84,  0, 45,   0, -11, 0, 1;
		

Crossrefs

Programs

  • Magma
    [(-1)^Floor((n-k)/2)*((1+(-1)^(n+k))/2)*Binomial(Floor((n+k+2)/2), k+1): k in [0..n], n in [0..15]]; // G. C. Greubel, Jan 13 2022
    
  • Mathematica
    Table[(-1)^Floor[(n-k)/2]*((1+(-1)^(n+k))/2)*Binomial[(n+k+2)/2, k+1], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Jan 13 2022 *)
  • Sage
    flatten([[(-1)^floor((n-k)/2)*((1+(-1)^(n+k))/2)*binomial((n+k+2)/2, k+1) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Jan 13 2022

Formula

Riordan array (1/(1+x^2)^2, x/(1+x^2)).
T(n, k) = (-1)^floor((n-k)/2)*Sum_{j=0..n} (1+(-1)^(n-j))*(1+(-1)^(j-k))*binomial((j+k)/2, k)/4.
Unsigned triangle = A128174 * A149310, as infinite lower triangular matrices, with row sums A052952: (1, 1, 3, 4, 8, 12, 21, 33, ...). - Gary W. Adamson, Oct 28 2007
T(n, k) = (-1)^floor((n-k)/2)*((1 + (-1)^(n+k))/2)*binomial((n+k+2)/2, k+1). - G. C. Greubel, Jan 13 2022
T(n,k) = A049310(n+1,k+1) . - R. J. Mathar, Feb 07 2024

A112553 Expansion of 1/( (1+x^2)*(1-x+x^2) ).

Original entry on oeis.org

1, 1, -1, -2, 0, 2, 1, -1, -1, 0, 0, 0, 1, 1, -1, -2, 0, 2, 1, -1, -1, 0, 0, 0, 1, 1, -1, -2, 0, 2, 1, -1, -1, 0, 0, 0, 1, 1, -1, -2, 0, 2, 1, -1, -1, 0, 0, 0, 1, 1, -1, -2, 0, 2, 1, -1, -1, 0, 0, 0, 1, 1, -1, -2, 0, 2, 1, -1, -1, 0, 0, 0
Offset: 0

Views

Author

Paul Barry, Sep 13 2005

Keywords

Comments

Row sums of A112552.

Examples

			G.f. = 1 + x - x^2 - 2*x^3 + 2*x^5 + x^6 - x^7 - x^8 + x^12 + x^13 - x^14 - 2*x^15 + ... - _Michael Somos_, Feb 15 2024
		

Crossrefs

Programs

  • Mathematica
    Join[{1}, PadRight[{}, 120, {1,-1,-2,0,2,1,-1,-1,0,0,0,1}]] (* G. C. Greubel, Jan 13 2022 *)
    a[ n_] := {1, 1, -1, -2, 0, 2, 1, -1, -1, 0, 0, 0}[[1 + Mod[n, 12]]]; (* Michael Somos, Feb 15 2024 *)
  • PARI
    {a(n) = [1, 1, -1, -2, 0, 2, 1, -1, -1, 0, 0, 0][1 + n%12]}; /* Michael Somos, Feb 15 2024 */

Formula

a(n) = (1/4)*Sum_{k=0..n} (-1)^floor((n-k)/2)*Sum_{j=0..n} (1+(-1)^(n-j))*(1+(-1)^(j-k)) *binomial((j+k)/2, k).
From G. C. Greubel, Jan 13 2022: (Start)
a(n) = Sum_{k=0..n} (-1)^floor((n-k)/2)*((1 + (-1)^(n+k))/2)*binomial((n+k+2)/2, k+1).
a(n + 12) = a(n). (End)
a(n) = -a(-4-n) for all n in Z. - Michael Somos, Feb 15 2024

A123514 Triangle read by rows: T(n,k) is the number of involutions of {1,2,...,n} with exactly k fixed points and which contain the pattern 321 exactly once (n>=3; 1<=k<=n-2).

Original entry on oeis.org

1, 0, 2, 4, 0, 3, 0, 10, 0, 4, 14, 0, 18, 0, 5, 0, 40, 0, 28, 0, 6, 48, 0, 81, 0, 40, 0, 7, 0, 150, 0, 140, 0, 54, 0, 8, 165, 0, 330, 0, 220, 0, 70, 0, 9, 0, 550, 0, 616, 0, 324, 0, 88, 0, 10, 572, 0, 1287, 0, 1040, 0, 455, 0, 108, 0, 11, 0, 2002, 0, 2548, 0, 1638, 0, 616, 0, 130, 0, 12
Offset: 3

Views

Author

Emeric Deutsch, Oct 13 2006

Keywords

Examples

			T(4,2)=2 because we have 1432 and 3214 (also 4231 is an involution with 2 fixed points but contains twice the pattern 321: 421 and 431).
Triangle starts:
    1;
    0,   2;
    4,   0,    3;
    0,  10,    0,   4;
   14,   0,   18,   0,    5;
    0,  40,    0,  28,    0,   6;
   48,   0,   81,   0,   40,   0,   7;
    0, 150,    0, 140,    0,  54,   0,  8;
  165,   0,  330,   0,  220,   0,  70,  0,   9;
    0, 550,    0, 616,    0, 324,   0, 88,   0, 10;
  572,   0, 1287,   0, 1040,   0, 455,  0, 108,  0, 11;
		

Crossrefs

Programs

  • Magma
    A123514:= func< n,k | ((1+(-1)^(n-k))/(2*(n+1)))*k*(k+3)*Binomial(n+1, Floor((n-k-2)/2)) >;
    [A123514(n,k): k in [1..n-2], n in [3..15]]; // G. C. Greubel, Jan 15 2022
    
  • Maple
    T:=proc(n,k) if n-k mod 2 = 0 and k<=n then k*(k+3)*binomial(n+1,(n-k)/2-1)/(n+1) else 0 fi end: for n from 3 to 15 do seq(T(n,k),k=1..n-2) od; # yields sequence in triangular form
  • Mathematica
    T[n_, k_]:= ((1+(-1)^(n-k))/2)*k*(k+3)*Binomial[n+1, (n-k-2)/2]/(n+1);
    Table[T[n, k], {n, 3, 15}, {k, n-2}]//Flatten (* G. C. Greubel, Jan 15 2022 *)
  • Sage
    def A123514(n,k): return ((1+(-1)^(n-k))/(2*(n+1)))*k*(k+3)*binomial(n+1, (n-k-2)//2)
    flatten([[A123514(n,k) for k in (1..n-2)] for n in (3..15)]) # G. C. Greubel, Jan 15 2022

Formula

T(n,k) = k*(k+3)*binomial(n+1,(n-k-2)/2)/(n+1), for n>=3, 1<=k<=n-2, n-k even.
From G. C. Greubel, Jan 15 2022: (Start)
Sum_{k=1..n-2} T(n, k) = A191389(n+1).
Sum_{k=1..floor((n-1)/2)} T(n-k, k) = ((1-(-1)^n)/2)*(12/(n+9))*binomial(n+2, (n- 3)/2). (End)

A123515 Triangle read by rows: T(n,k) is the number of involutions of {1,2,...,n} with exactly k fixed points and which contain the pattern 231 exactly once (n>=4, 2<=k<=n-2).

Original entry on oeis.org

1, 0, 2, 2, 0, 3, 0, 8, 0, 4, 5, 0, 18, 0, 5, 0, 26, 0, 32, 0, 6, 12, 0, 75, 0, 50, 0, 7, 0, 76, 0, 164, 0, 72, 0, 8, 28, 0, 264, 0, 305, 0, 98, 0, 9, 0, 208, 0, 680, 0, 510, 0, 128, 0, 10, 64, 0, 840, 0, 1460, 0, 791, 0, 162, 0, 11, 0, 544, 0, 2480, 0, 2772, 0, 1160, 0, 200, 0, 12
Offset: 4

Views

Author

Emeric Deutsch, Oct 13 2006

Keywords

Comments

Also the number of involutions of {1,2,...,n} with exactly k fixed points and which contain the pattern 312 exactly once (n>=4, 2<=k<=n-2). Example: T(5,3)=2 because we have 15342 and 42315 (also the involution 52341 has 3 fixed points but it contains 3 times the pattern 312: 523, 524 and 534).

Examples

			T(5,3)=2 because we have 15342 and 42315 (also the involution 52341 has 3 fixed points but it contains 3 times the pattern 231: 231, 241 and 341).
Triangle starts:
   1;
   0,   2;
   2,   0,   3;
   0,   8,   0,    4;
   5,   0,  18,    0,    5;
   0,  26,   0,   32,    0,    6;
  12,   0,  75,    0,   50,    0,   7;
   0,  76,   0,  164,    0,   72,   0,    8;
  28,   0, 264,    0,  305,    0,  98,    0,   9;
   0, 208,   0,  680,    0,  510,   0,  128,   0,  10;
  64,   0, 840,    0, 1460,    0, 791,    0, 162,   0, 11;
   0, 544,   0, 2480,    0, 2772,   0, 1160,   0, 200,  0, 12;
		

Crossrefs

Programs

  • Maple
    T:=proc(n,k) if n>=4 and n+k mod 2 = 0 then (k-1)*2^((n-k-6)/2)*(binomial((n+k)/2-2,(n-k)/2-1)+2*binomial((n+k)/2-3, (n-k)/2-1)+binomial((n+k)/2-4,(n-k)/2-1)) else 0 fi end: for n from 4 to 16 do seq(T(n,k),k=2..n-2) od; # yields sequence in triangular form
  • Mathematica
    T[n_, k_]:= ((1+(-1)^(n-k))/2)*2^((n-k-6)/2)*(k-1)* Sum[Binomial[2, j]*
      Binomial[(n+k-2*(j+2))/2, (n-k-2)/2], {j, 0, 2}];
    Table[T[n, k], {n,4,16}, {k,2,n-2}]//Flatten (* G. C. Greubel, Jan 16 2022 *)
  • Sage
    def A123515(n,k): return ((1+(-1)^(n+k))/2)*2^((n-k-6)/2)*(k-1)*sum( binomial(2, j)*binomial((n+k-2*j-2)/2, (n-k-2)/2) for j in (0..2) )
    flatten([[A123515(n,k) for k in (2..n-2)] for n in (4..16)]) # G. C. Greubel, Jan 16 2022

Formula

T(n, k) = 2^((n-k-6)/2)*(k-1)*( binomial((n+k)/2-2, (n-k)/2-1) + 2*binomial((n+k)/2-3, (n-k)/2-1) + binomial((n+k)/2-4, (n-k)/2-1) ) for n>=4, n+k even; T(n,k) = 0 otherwise.
From G. C. Greubel, Jan 16 2022: (Start)
Sum_{k=2..n-4} T(n, k) = A045623(n).
Sum_{k=2..floor(n/2)} T(n-k+2, k) = (1/9)*[n=4] + (1+(-1)^n)*n*3^((n-8)/2). (End)
Showing 1-4 of 4 results.