A247907 Expansion of (1 + x) / ((1 - x^4) * (1 - x - x^5)) in powers of x.
1, 2, 2, 2, 3, 5, 7, 9, 12, 16, 21, 28, 38, 51, 67, 88, 117, 156, 207, 274, 363, 481, 637, 844, 1119, 1483, 1964, 2601, 3446, 4566, 6049, 8013, 10615, 14062, 18628, 24677, 32691, 43307, 57369, 75997, 100675, 133367, 176674, 234043, 310041, 410717, 544084
Offset: 0
Examples
G.f. = 1 + 2*x + 2*x^2 + 2*x^3 + 3*x^4 + 5*x^5 + 7*x^6 + 9*x^7 + 12*x^8 + ...
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (2,-2,2,-1,1,-1,1,-1).
Programs
-
Magma
m:=60; R
:=PowerSeriesRing(Integers(), m); Coefficients(R!((1 +x)/((1-x^4)*(1-x-x^5)))); // G. C. Greubel, Aug 04 2018 -
Mathematica
CoefficientList[Series[(1 + x)/((1 - x^4) (1 - x - x^5)), {x, 0, 100}], x] (* Vincenzo Librandi, Sep 27 2014 *)
-
PARI
{a(n) = if( n<0, n=-8-n; polcoeff( -1 / ((1 - x) * (1 - x + x^2) * (1 + x^2) * (1 + x - x^3)) + x * O(x^n), n), polcoeff( 1 / ((1 - x) * (1 - x + x^2) * (1 + x^2) * (1 - x^2 - x^3)) + x * O(x^n), n))};
Formula
G.f.: 1 / ((1 - x) * (1 - x + x^2) * (1 + x^2) * (1 - x^2 - x^3)).
a(n) = -A247918(-8-n) for all n in Z.
0 = a(n) + a(n+4) - a(n+5) + mod(floor((n-1) / 2), 2) for all n in Z.
0 = a(n) - a(n+1) + a(n+2) - a(n+3) + a(n+4) - 2*a(n+5) + 2*a(n+6) - 2*a(n+7) + a(n+8) for all n in Z.