cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A112554 Riordan array (c(x^2)^2, x*c(x^2)), c(x) the g.f. of A000108.

Original entry on oeis.org

1, 0, 1, 2, 0, 1, 0, 3, 0, 1, 5, 0, 4, 0, 1, 0, 9, 0, 5, 0, 1, 14, 0, 14, 0, 6, 0, 1, 0, 28, 0, 20, 0, 7, 0, 1, 42, 0, 48, 0, 27, 0, 8, 0, 1, 0, 90, 0, 75, 0, 35, 0, 9, 0, 1, 132, 0, 165, 0, 110, 0, 44, 0, 10, 0, 1, 0, 297, 0, 275, 0, 154, 0, 54, 0, 11, 0, 1, 429, 0, 572, 0, 429, 0, 208, 0, 65, 0, 12, 0, 1
Offset: 0

Views

Author

Paul Barry, Sep 13 2005

Keywords

Comments

Inverse of A112552.
The n-th row polynomial (in descending powers of x) is equal to the n-th degree Taylor polynomial of the polynomial function (1 - x^4)*(1 + x^2)^n about 0. For example, when n = 6, (1 - x^4)*(1 + x^2)^6 = 1 + 6*x^2 + 14*x^4 + 14*x^6 + O(x^8). - Peter Bala, Feb 19 2018

Examples

			Triangle begins
   1;
   0, 1;
   2, 0,  1;
   0, 3,  0, 1;
   5, 0,  4, 0, 1;
   0, 9,  0, 5, 0, 1;
  14, 0, 14, 0, 6, 0, 1;
		

Crossrefs

Row sums A037952, matrix inverse A112552.
Cf. A000108, A037952 (row sums), A112552, A112553.

Programs

  • Magma
    A112554:= func< n,k | ((1+(-1)^(n-k))/2)*(Binomial(n, Floor((n-k)/2)) - Binomial(n, Floor((n-k-4)/2))) >;
    [A112554(n,k): k in [0..n], n in [0..15]]; // G. C. Greubel, Jan 13 2022
  • Maple
    seq(seq((1 + (-1)^(n-k))/2*( binomial(n, floor((n - k)/2)) - binomial(n, floor((n - k - 4)/2 )) ), k = 0..n), n = 0..10); # Peter Bala, Feb 19 2018
  • Mathematica
    T[n_, k_] := (1 + (-1)^(n-k))/2 (Binomial[n, Floor[(n-k)/2]] - Binomial[n, Floor[(n-k-4)/2]]);
    Table[T[n, k], {n, 0, 12}, {k, 0, n}] (* Jean-François Alcover, Jun 13 2019 *)
  • Sage
    # Algorithm of L. Seidel (1877)
    # Prints the first n rows of a signed version of the triangle.
    def Signed_A112554_triangle(n) :
        D = [0]*(n+4); D[1] = 1
        b = False; h = 2
        for i in range(2*n+2) :
            if b :
                for k in range(h,0,-1) : D[k] += D[k-1]
                h += 1
            else :
                for k in range(1,h, 1) : D[k] -= D[k+1]
            b = not b
            if b and i > 0 : print([D[z] for z in (2..h-1)])
    Signed_A112554_triangle(13) # Peter Luschny, May 01 2012
    

Formula

Sum_{k=0..n} T(n, k) = binomial(n+1, floor(n/2)) = A037952(n+1).
T(n, k) = ((1 + (-1)^(n-k))/2)*binomial(n, floor((n-k)/2)) - binomial(n, floor((n-k-4)/2 )). - Peter Bala, Feb 19 2018