A112554 Riordan array (c(x^2)^2, x*c(x^2)), c(x) the g.f. of A000108.
1, 0, 1, 2, 0, 1, 0, 3, 0, 1, 5, 0, 4, 0, 1, 0, 9, 0, 5, 0, 1, 14, 0, 14, 0, 6, 0, 1, 0, 28, 0, 20, 0, 7, 0, 1, 42, 0, 48, 0, 27, 0, 8, 0, 1, 0, 90, 0, 75, 0, 35, 0, 9, 0, 1, 132, 0, 165, 0, 110, 0, 44, 0, 10, 0, 1, 0, 297, 0, 275, 0, 154, 0, 54, 0, 11, 0, 1, 429, 0, 572, 0, 429, 0, 208, 0, 65, 0, 12, 0, 1
Offset: 0
Examples
Triangle begins 1; 0, 1; 2, 0, 1; 0, 3, 0, 1; 5, 0, 4, 0, 1; 0, 9, 0, 5, 0, 1; 14, 0, 14, 0, 6, 0, 1;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
- Peter Bala, A 4-parameter family of embedded Riordan arrays
Crossrefs
Programs
-
Magma
A112554:= func< n,k | ((1+(-1)^(n-k))/2)*(Binomial(n, Floor((n-k)/2)) - Binomial(n, Floor((n-k-4)/2))) >; [A112554(n,k): k in [0..n], n in [0..15]]; // G. C. Greubel, Jan 13 2022
-
Maple
seq(seq((1 + (-1)^(n-k))/2*( binomial(n, floor((n - k)/2)) - binomial(n, floor((n - k - 4)/2 )) ), k = 0..n), n = 0..10); # Peter Bala, Feb 19 2018
-
Mathematica
T[n_, k_] := (1 + (-1)^(n-k))/2 (Binomial[n, Floor[(n-k)/2]] - Binomial[n, Floor[(n-k-4)/2]]); Table[T[n, k], {n, 0, 12}, {k, 0, n}] (* Jean-François Alcover, Jun 13 2019 *)
-
Sage
# Algorithm of L. Seidel (1877) # Prints the first n rows of a signed version of the triangle. def Signed_A112554_triangle(n) : D = [0]*(n+4); D[1] = 1 b = False; h = 2 for i in range(2*n+2) : if b : for k in range(h,0,-1) : D[k] += D[k-1] h += 1 else : for k in range(1,h, 1) : D[k] -= D[k+1] b = not b if b and i > 0 : print([D[z] for z in (2..h-1)]) Signed_A112554_triangle(13) # Peter Luschny, May 01 2012
Formula
Sum_{k=0..n} T(n, k) = binomial(n+1, floor(n/2)) = A037952(n+1).
T(n, k) = ((1 + (-1)^(n-k))/2)*binomial(n, floor((n-k)/2)) - binomial(n, floor((n-k-4)/2 )). - Peter Bala, Feb 19 2018
Comments