cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A112556 Sums of squared terms in rows of triangle A112555.

Original entry on oeis.org

1, 2, 2, 4, 10, 32, 112, 408, 1514, 5680, 21472, 81644, 311896, 1196132, 4602236, 17757184, 68680170, 266200112, 1033703056, 4020716124, 15662273840, 61092127492, 238582873476, 932758045124, 3650336341240, 14298633670932, 56055986383412, 219931273282348, 863504076182884, 3392593262288780, 13337336618626132
Offset: 0

Views

Author

Paul D. Hanna, Sep 21 2005

Keywords

Comments

First differences form A072547 and equals the unsigned central terms of triangle A112555.

Crossrefs

Programs

  • Magma
    [(1/3)*(4 - (-1/2)^n) + (n+1)*Catalan(n) - (&+[(j+1)*Catalan(j)*(-1/2)^(n-j): j in [0..n]]): n in [0..30]]; // G. C. Greubel, Jan 13 2022
    
  • Mathematica
    CoefficientList[Series[(2(1+x)/(1-x)+x/(1-4x)^(1/2))/(2+x), {x,0,30}], x] (* Harvey P. Dale, May 26 2011 *)
  • PARI
    {a(n)=local(x=X+X*O(X^n)); polcoeff((2*(1+x)/(1-x)+x/(1-4*x)^(1/2))/(2+x),n,X)}
    
  • Sage
    [(1/3)*(4 - (-1/2)^n) - sum( binomial(2*j, j)*(-1/2)^(n-j) for j in (0..n-1)) for n in (0..30)] # G. C. Greubel, Jan 13 2022

Formula

G.f.: ( 2*(1+x)/(1-x) + x/(1-4*x)^(1/2) )/(2+x).
a(n) ~ 2^(2*n) / (9*sqrt(Pi*n)). - Vaclav Kotesovec, Mar 26 2016
a(n) = (1/3)*(4 - (-1/2)^n) - Sum_{j=0..n-1} binomial(2*j, j)*(-1/2)^(n-j). - G. C. Greubel, Jan 13 2022