cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A112237 If a(n-2) is the i-th Fibonacci number then a(n)=Fibonacci(i+a(n-1)); with a(1)=1, a(2)=2 and where we use the following nonstandard indexing for the Fibonacci numbers: f(n)=f(n-1)+f(n-2), f(1)=1, f(2)=2 (cf. A000045).

Original entry on oeis.org

1, 2, 3, 8, 144, 9969216677189303386214405760200
Offset: 1

Views

Author

Yasutoshi Kohmoto, Dec 22 2005

Keywords

Comments

The next term, a(7)=f(9969216677189303386214405760211), has tens of thousands of digits at least and is too large to include. - R. J. Mathar, Oct 14 2006

Examples

			a(5)=Fibonacci(3+8)=144 because a(3) is third Fibonacci number and a(4)=8.
		

Crossrefs

Extensions

a(6)=f(149) from R. J. Mathar, Oct 14 2006

A112866 If a(n-1) is the i-th Fibonacci number then a(n)=Fibonacci(i+a(n-2)); with a(1)=1, a(2)=2 and where we use the following nonstandard indexing for the Fibonacci numbers: f(n)=f(n-1)+f(n-2), f(1)=1, f(2)=2 (cf. A000045).

Original entry on oeis.org

1, 2, 3, 8, 34, 1597, 20365011074
Offset: 1

Views

Author

Yasutoshi Kohmoto, Dec 25 2005

Keywords

Comments

The next term has 345 digits and is not displayed here.

Examples

			a(5)=Fibonacci(5+3)=34 because a(4) is the 5th Fibonacci number and a(3)=3.
		

Crossrefs

Programs

  • Maple
    f := proc(n)
        combinat[fibonacci](n+1) ;
    end proc:
    Fidx := proc(n)
        for i from 1 do
            if f(i) = n then
                return i;
            elif f(i) > n then
                return -1 ;
            end if;
        end do:
    end proc:
    A112866 := proc(n)
        option remember;
        if n<= 2 then
            n;
        else
            i := Fidx(procname(n-1)) ;
            f( i+procname(n-2)) ;
        end if:
    end proc: # R. J. Mathar, Nov 26 2011
  • Mathematica
    f[n_] := Fibonacci[n+1];
    Fidx[n_] := For[i = 1, True, i++, If[f[i] == n, Return[i], If[f[i] > n, Return[-1]]]];
    a[n_] := a[n] = If[n <= 2, n, i = Fidx[a[n-1]]; f[i+a[n-2]]];
    Table[a[n], {n, 1, 7}] (* Jean-François Alcover, Oct 26 2023, after R. J. Mathar *)
Showing 1-2 of 2 results.