cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A112866 If a(n-1) is the i-th Fibonacci number then a(n)=Fibonacci(i+a(n-2)); with a(1)=1, a(2)=2 and where we use the following nonstandard indexing for the Fibonacci numbers: f(n)=f(n-1)+f(n-2), f(1)=1, f(2)=2 (cf. A000045).

Original entry on oeis.org

1, 2, 3, 8, 34, 1597, 20365011074
Offset: 1

Views

Author

Yasutoshi Kohmoto, Dec 25 2005

Keywords

Comments

The next term has 345 digits and is not displayed here.

Examples

			a(5)=Fibonacci(5+3)=34 because a(4) is the 5th Fibonacci number and a(3)=3.
		

Crossrefs

Programs

  • Maple
    f := proc(n)
        combinat[fibonacci](n+1) ;
    end proc:
    Fidx := proc(n)
        for i from 1 do
            if f(i) = n then
                return i;
            elif f(i) > n then
                return -1 ;
            end if;
        end do:
    end proc:
    A112866 := proc(n)
        option remember;
        if n<= 2 then
            n;
        else
            i := Fidx(procname(n-1)) ;
            f( i+procname(n-2)) ;
        end if:
    end proc: # R. J. Mathar, Nov 26 2011
  • Mathematica
    f[n_] := Fibonacci[n+1];
    Fidx[n_] := For[i = 1, True, i++, If[f[i] == n, Return[i], If[f[i] > n, Return[-1]]]];
    a[n_] := a[n] = If[n <= 2, n, i = Fidx[a[n-1]]; f[i+a[n-2]]];
    Table[a[n], {n, 1, 7}] (* Jean-François Alcover, Oct 26 2023, after R. J. Mathar *)

A112601 a(n) = prime(b(n)) where b(n) = b(n-2) + a(n-1) (with b(1)=1, b(2)=2).

Original entry on oeis.org

2, 3, 7, 23, 103, 613, 4751, 47137, 582511, 8758339, 156819893, 3283370969, 79174605361, 2171048919947, 66970610115763, 2302616062156639, 87542957597514007, 3654858165039471959
Offset: 1

Views

Author

Yasutoshi Kohmoto, Dec 15 2005

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = Prime[b[n]]; b[1] = 1; b[2] = 2; b[n_] := b[n] = b[n - 2] + a[n - 1]; Array[a, 15] (* Robert G. Wilson v, Dec 22 2005 *)

Extensions

Better definition from Dean Hickerson, more terms from Emeric Deutsch, Dec 17 2005
a(12)-a(15) from Robert G. Wilson v, Dec 22 2005
a(16)-a(18) from Amiram Eldar, Sep 12 2022

A114641 a(n) = 2^(a(n-2) + log_{2}(a(n-1))), a(1)=1, a(2)=2.

Original entry on oeis.org

1, 2, 4, 16, 256, 16777216, 1942668892225729070919461906823518906642406839052139521251812409738904285205208498176
Offset: 1

Views

Author

Yasutoshi Kohmoto, Feb 18 2006

Keywords

Comments

The subsequent terms are too large to include.
Apparently a(n) = A000643(n+2) - A000643(n+1). - R. J. Mathar, Apr 22 2007

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{a[1]==1,a[2]==2,a[n]==2^(a[n-2]+Log[2,a[n-1]])},a,{n,6}] (* Harvey P. Dale, Aug 23 2013 *)

Formula

a(n) = a(n-1) * 2^a(n-2) for n >= 3. - Alois P. Heinz, Jun 28 2021

Extensions

Definition adapted to offset by Georg Fischer, Jun 18 2021

A114642 a(n) = 2^(log_{2}(a(n-2))+a(n-1)), a(1)=1, a(2)=2.

Original entry on oeis.org

1, 2, 4, 32, 17179869184
Offset: 1

Views

Author

Yasutoshi Kohmoto, Feb 18 2006

Keywords

Crossrefs

Extensions

Definition adapted to offset by Georg Fischer, Jun 18 2021
Showing 1-4 of 4 results.