cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A112607 Number of representations of n as a sum of a triangular number and twelve times a triangular number.

Original entry on oeis.org

1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 2, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 2, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 2, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 2, 1, 0, 1, 0, 0, 3, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 2, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0
Offset: 0

Views

Author

James Sellers, Dec 21 2005

Keywords

Comments

Ramanujan theta functions: f(q) := Prod_{k>=1} (1-(-q)^k) (see A121373), phi(q) := theta_3(q) := Sum_{k=-oo..oo} q^(k^2) (A000122), psi(q) := Sum_{k=0..oo} q^(k*(k+1)/2) (A010054), chi(q) := Prod_{k>=0} (1+q^(2k+1)) (A000700).

Examples

			a(15) = 2 since we can write 15 = 15 + 12*0 = 3 + 12*1.
		

Crossrefs

A123484(24n+15) = 2*a(n). A112609(3n+4) = a(n).

Programs

  • Mathematica
    a[n_] := DivisorSum[8n+13, KroneckerSymbol[-3, #]&]/2; Table[a[n], {n, 0, 104}] (* Jean-François Alcover, Dec 04 2015, adapted from PARI *)
  • PARI
    {a(n)=if(n<0, 0, n=8*n+13; sumdiv(n, d, kronecker(-3,d))/2)} /* Michael Somos, Sep 29 2006 */
    
  • PARI
    {a(n)=local(A); if(n<0, 0, A=x*O(x^n); polcoeff( eta(x^2+A)^2*eta(x^24+A)^2/eta(x+A)/eta(x^12+A), n))} /* Michael Somos, Sep 29 2006 */

Formula

a(n) = 1/2*( d_{1, 3}(8n+13) - d_{2, 3}(8n+13) ) where d_{a, m}(n) equals the number of divisors of n which are congruent to a mod m.
Expansion of q^(-13/8)*(eta(q^2)*eta(q^24))^2/(eta(q)*eta(q^12)) in powers of q. - Michael Somos, Sep 29 2006
Expansion of psi(q)*psi(q^12) in powers of q where psi() is a Ramanujan theta function. - Michael Somos, Sep 29 2006
Euler transform of period 24 sequence [ 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, 0, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -2, ...]. - Michael Somos, Sep 29 2006
a(3n+2)=0. - Michael Somos, Sep 29 2006