A112608 Number of representations of n as a sum of a twice a square and three times a triangular number.
1, 0, 2, 1, 0, 2, 0, 0, 2, 1, 0, 4, 0, 0, 0, 0, 0, 2, 3, 0, 2, 2, 0, 0, 0, 0, 2, 2, 0, 0, 1, 0, 4, 0, 0, 2, 2, 0, 2, 0, 0, 2, 0, 0, 0, 1, 0, 2, 2, 0, 4, 0, 0, 4, 0, 0, 0, 0, 0, 2, 0, 0, 2, 3, 0, 2, 0, 0, 2, 0, 0, 2, 2, 0, 0, 2, 0, 2, 0, 0, 2, 4, 0, 0, 1, 0, 2, 0, 0, 0, 2, 0, 2, 0, 0, 4, 0, 0, 2, 0, 0, 2, 4, 0, 0
Offset: 0
Keywords
Examples
a(11) = 4 since we can write 11 = 2*(2)^2 + 3*1 = 2*(-2)^2 + 3*1 = 2*(1)^2 + 3*3 = 2*(-1)^2 + 3*3
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- M. D. Hirschhorn, The number of representations of a number by various forms, Discrete Mathematics 298 (2005), 205-211
Programs
-
Mathematica
eta[x_] := x^(1/24)*QPochhammer[x]; A112608[n_] := SeriesCoefficient[ q^(-3/8)*(eta[q^4]^5*eta[q^6]^2)/(eta[q^2]^2*eta[q^3]*eta[q^8]^2), {q, 0, n}]; Table[A112608[n], {n, 0, 50}] (* G. C. Greubel, Sep 25 2017 *)
-
PARI
{a(n)=local(A); if(n<0, 0, A=x*O(x^n); polcoeff( eta(x^4+A)^5*eta(x^6+A)^2/ eta(x^2+A)^2/eta(x^3+A)/eta(x^8)^2, n))} /* Michael Somos, Jan 01 2006 */
Formula
a(n) = d_{1, 3}(8n+3) - d_{2, 3}(8n+3) where d_{a, m}(n) equals the number of divisors of n which are congruent to a mod m.
Euler transform of period 24 sequence [0, 2, 1, -3, 0, 1, 0, -1, 1, 2, 0, -4, 0, 2, 1, -1, 0, 1, 0, -3, 1, 2, 0, -2, ...]. - Michael Somos, Jan 01 2006
Expansion of q^(-3/8)*(eta(q^4)^5*eta(q^6)^2)/(eta(q^2)^2*eta(q^3)*eta(q^8)^2) in powers of q.
a(n) = A002324(8*n+3).
Comments