cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A112609 Number of representations of n as a sum of three times a triangular number and four times a triangular number.

Original entry on oeis.org

1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 2, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 2, 1, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 2, 0, 0, 0, 1, 0, 2, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 2, 1, 0, 2, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0
Offset: 0

Views

Author

James Sellers, Dec 21 2005

Keywords

Comments

Ramanujan theta functions: f(q) := Prod_{k>=1} (1-(-q)^k) (see A121373), phi(q) := theta_3(q) := Sum_{k=-oo..oo} q^(k^2) (A000122), psi(q) := Sum_{k=0..oo} q^(k*(k+1)/2) (A010054), chi(q) := Prod_{k>=0} (1+q^(2k+1)) (A000700).

Examples

			a(30) = 2 since we can write 30 = 3*10 + 4*0 = 3*6 + 4*3
q^7 + q^31 + q^39 + q^63 + q^79 + q^103 + q^111 + q^127 + q^151 + ...
		

References

  • M. D. Hirschhorn, The number of representations of a number by various forms, Discrete Mathematics 298 (2005), 205-211.

Crossrefs

A131962(n) = a(3*n). A112607(n) = a(3*n+1). A128617(n) = a(4*n+3).
A112605(2*n+1) = 2 * a(n). A112607(3*n+1) = a(n). A033762(4*n+3) = 2 * a(n). A112604(6*n+5) = 2 * a(n). A002324(8*n+7) = a(n). A123484(24*n+21) = 2 * a(n).

Programs

  • Mathematica
    A112609[n_] := SeriesCoefficient[(QPochhammer[q^6]*QPochhammer[q^8])^2/
    (QPochhammer[q^3]*QPochhammer[q^4]), {q,0,n}]; Table[A112609[n], {n, 0, 50}] (* G. C. Greubel, Sep 25 2017 *)
  • PARI
    {a(n) = if( n<0, 0, n=8*n+7; sumdiv(n, d, kronecker(-3, d))/2)} /* Michael Somos, Mar 10 2008 */
    
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^6 + A) * eta(x^8 + A))^2 / (eta(x^3 + A) * eta(x^4 + A)), n))} /* Michael Somos, Mar 10 2008 */

Formula

a(n) = 1/2*( d_{1, 3}(8n+7) - d_{2, 3}(8n+7) ) where d_{a, m}(n) equals the number of divisors of n which are congruent to a mod m.
Expansion of phi(q^3) * psi(q^4) in powers of q where psi() is a Ramanujan theta function. - Michael Somos, Mar 10 2008
Expansion of q^(-7/8) * (eta(q^6) * eta(q^8))^2 / (eta(q^3) * eta(q^4)) in powers of q. - Michael Somos, Mar 10 2008
Euler transform of period 24 sequence [ 0, 0, 1, 1, 0, -1, 0, -1, 1, 0, 0, 0, 0, 0, 1, -1, 0, -1, 0, 1, 1, 0, 0, -2, ...]. - Michael Somos, Mar 10 2008
G.f. is a period 1 Fourier series which satisfies f(-1 / (24 t)) = 3^(1/2) (t/i) g(t) where q = exp(2 Pi i t) and g() is g.f. for A138270.
a(3*n+2) = 0.