A112627 Decimal equivalent of number defined by last k bits of the infinite binary string ...0011001100110011 (numbers with leading zeros omitted).
1, 3, 19, 51, 307, 819, 4915, 13107, 78643, 209715, 1258291, 3355443, 20132659, 53687091, 322122547, 858993459, 5153960755, 13743895347, 82463372083, 219902325555, 1319413953331, 3518437208883, 21110623253299, 56294995342131, 337769972052787, 900719925474099
Offset: 1
Examples
1 = 1 11 = 3 10011 = 19 110011 = 51 100110011 = 307 1100110011 = 819 ...
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,16,-16).
Crossrefs
Cf. A182512.
Programs
-
Maple
seq(4^(n-1) - (4 + (-4)^n)/20, n=1..100); # Robert Israel, Sep 02 2014
-
Mathematica
t = {}; lst = First@RealDigits[ N[1/5, 100], 2]; Do[ If[ lst[[n]] == 1, AppendTo[t, FromDigits[ Reverse@Take[lst, n], 2]]], {n, 49}]; t (* The first line establishes the binary expansion of 1/5 to 100 places (A021913, except for start). The loop extracts the first n terms in this sequence and if it ends in "1", reverses digits and converts to decimal. *) Table[FromDigits[PadLeft[{},n,{0,0,1,1}],2],{n,60}]//Union (* Harvey P. Dale, Mar 15 2016 *)
-
PARI
Vec(x*(1+2*x)/((1-x)*(1-4*x)*(1+4*x)) + O(x^50)) \\ Colin Barker, May 19 2016
Formula
G.f.: x*(1+2*x)/(1-x-16*x^2+16*x^3).
a(n) = 4^(n-1) - (4 + (-4)^n)/20. - Robert Israel, Sep 02 2014
a(n) = a(n-1)+16*a(n-2)-16*a(n-3) for n>3. - Colin Barker, May 19 2016
Comments