cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A112627 Decimal equivalent of number defined by last k bits of the infinite binary string ...0011001100110011 (numbers with leading zeros omitted).

Original entry on oeis.org

1, 3, 19, 51, 307, 819, 4915, 13107, 78643, 209715, 1258291, 3355443, 20132659, 53687091, 322122547, 858993459, 5153960755, 13743895347, 82463372083, 219902325555, 1319413953331, 3518437208883, 21110623253299, 56294995342131, 337769972052787, 900719925474099
Offset: 1

Views

Author

N. J. A. Sloane, based on email from Artur Jasinski, with assistance from Dean Hickerson, Ray Chandler and Robert G. Wilson v, Dec 27 2005

Keywords

Comments

A182512 is a bisection. - Olena Kachko, Dec 16 2023

Examples

			1 = 1
11 = 3
10011 = 19
110011 = 51
100110011 = 307
1100110011 = 819
...
		

Crossrefs

Cf. A182512.

Programs

  • Maple
    seq(4^(n-1) - (4 + (-4)^n)/20, n=1..100); # Robert Israel, Sep 02 2014
  • Mathematica
    t = {}; lst = First@RealDigits[ N[1/5, 100], 2]; Do[ If[ lst[[n]] == 1, AppendTo[t, FromDigits[ Reverse@Take[lst, n], 2]]], {n, 49}]; t
    (* The first line establishes the binary expansion of 1/5 to 100 places (A021913, except for start). The loop extracts the first n terms in this sequence and if it ends in "1", reverses digits and converts to decimal. *)
    Table[FromDigits[PadLeft[{},n,{0,0,1,1}],2],{n,60}]//Union (* Harvey P. Dale, Mar 15 2016 *)
  • PARI
    Vec(x*(1+2*x)/((1-x)*(1-4*x)*(1+4*x)) + O(x^50)) \\ Colin Barker, May 19 2016

Formula

G.f.: x*(1+2*x)/(1-x-16*x^2+16*x^3).
a(n) = 4^(n-1) - (4 + (-4)^n)/20. - Robert Israel, Sep 02 2014
a(n) = a(n-1)+16*a(n-2)-16*a(n-3) for n>3. - Colin Barker, May 19 2016