A112632 Excess of 3k - 1 primes over 3k + 1 primes, beginning with 2.
1, 1, 2, 1, 2, 1, 2, 1, 2, 3, 2, 1, 2, 1, 2, 3, 4, 3, 2, 3, 2, 1, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 4, 3, 4, 3, 2, 1, 2, 3, 4, 3, 4, 3, 4, 3, 2, 1, 2, 1, 2, 3, 2, 3, 4, 5, 6, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 3, 4, 3, 4, 5, 4, 3, 2, 3, 4, 3, 4, 3, 4, 3, 4, 3, 2, 3, 4, 3, 4, 3, 4, 5, 4, 5, 4, 5, 6, 7, 6, 5
Offset: 1
Examples
a(1) = 1 because 2 == -1 (mod 3). a(2) = 1 because 3 == 0 (mod 3) and does not change the counting. a(3) = 2 because 5 == -1 (mod 3). a(4) = 1 because 7 == 1 (mod 3).
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
- A. Granville and G. Martin, Prime number races, Amer. Math. Monthly, 113 (No. 1, 2006), pp. 1-33.
- Wikipedia, Chebyshev's bias
Crossrefs
Programs
-
Haskell
a112632 n = a112632_list !! (n-1) a112632_list = scanl1 (+) $ map negate a134323_list -- Reinhard Zumkeller, Sep 16 2014
-
Mathematica
a[n_] := a[n] = a[n-1] + If[Mod[Prime[n], 6] == 1, -1, 1]; a[1] = a[2] = 1; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Jul 24 2012 *) Accumulate[Which[IntegerQ[(#+1)/3],1,IntegerQ[(#-1)/3],-1,True,0]& /@ Prime[ Range[100]]] (* Harvey P. Dale, Jun 06 2013 *)
-
PARI
a(n) = -sum(i=1, n, kronecker(-3, prime(i))) \\ Jianing Song, Nov 24 2018
Formula
a(n) = -Sum_{primes p<=n} Legendre(prime(i),3) = -Sum_{primes p<=n} Kronecker(-3,prime(i)) = -Sum_{i=1..n} A102283(prime(i)). - Jianing Song, Nov 24 2018
Comments