cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A112651 Numbers k such that k^2 == k (mod 11).

Original entry on oeis.org

0, 1, 11, 12, 22, 23, 33, 34, 44, 45, 55, 56, 66, 67, 77, 78, 88, 89, 99, 100, 110, 111, 121, 122, 132, 133, 143, 144, 154, 155, 165, 166, 176, 177, 187, 188, 198, 199, 209, 210, 220, 221, 231, 232, 242, 243, 253, 254, 264, 265, 275, 276, 286, 287, 297, 298
Offset: 1

Views

Author

Jeremy Gardiner, Dec 28 2005

Keywords

Comments

Numbers that are congruent to {0,1} (mod 11). - Philippe Deléham, Oct 17 2011

Examples

			12 is a term because 12*12 = 144 == 1 (mod 11) and 12 == 1 (mod 11).
		

Crossrefs

Cf. A010880 (n mod 11), A070434 (n^2 mod 11).

Programs

  • Maple
    m = 11 for n = 1 to 300 if n^2 mod m = n mod m then print n; next n
  • Mathematica
    Select[Range[0,300],PowerMod[#,2,11]==Mod[#,11]&] (* or *) LinearRecurrence[ {1,1,-1},{0,1,11},60] (* Harvey P. Dale, Apr 19 2015 *)
  • PARI
    a(n)=11*n/2-31/4-9*(-1)^n/4 \\ Charles R Greathouse IV, Oct 16 2015

Formula

a(n) = 11*n - a(n-1) - 21 (with a(1)=0). - Vincenzo Librandi, Nov 13 2010
From R. J. Mathar, Oct 08 2011: (Start)
a(n) = 11*n/2 - 31/4 - 9*(-1)^n/4.
G.f.: x^2*(1+10*x) / ( (1+x)*(x-1)^2 ). (End)
a(n+1) = Sum_{k>=0} A030308(n,k)*A005015(k-1) with A005015(-1)=1. - Philippe Deléham, Oct 17 2011

Extensions

Edited by N. J. A. Sloane, Aug 19 2010
Definition clarified by Harvey P. Dale, Apr 19 2015