cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A151972 Numbers that are congruent to {0, 1, 6, 10} mod 15.

Original entry on oeis.org

0, 1, 6, 10, 15, 16, 21, 25, 30, 31, 36, 40, 45, 46, 51, 55, 60, 61, 66, 70, 75, 76, 81, 85, 90, 91, 96, 100, 105, 106, 111, 115, 120, 121, 126, 130, 135, 136, 141, 145, 150, 151, 156, 160, 165, 166, 171, 175, 180, 181, 186, 190, 195, 196, 201, 205, 210, 211, 216, 220, 225
Offset: 1

Views

Author

N. J. A. Sloane, Aug 23 2009

Keywords

Comments

Also, numbers n such that n^2 - n is divisible by 15.
Also, numbers n such that n^2 - n is divisible by 30.

Crossrefs

For m^2 == m (mod n), see: n=2: A001477, n=3: A032766, n=4: A042948, n=5: A008851, n=6: A032766, n=7: A047274, n=8: A047393, n=9: A090570, n=10: A008851, n=11: A112651, n=12: A112652, n=13: A112653, n=14: A047274, n=15: A151972, n=16: A151977, n=17: A151978, n=18: A090570, n=19: A151979, n=20: A151980, n=21: A151971, n=22, A112651, n=24: A151973, n=26: A112653, n=30: A151972, n=32: A151983, n=34: A151978, n=38: A151979, n=42: A151971, n=48: A151981, n=64: A151984.
Cf. A215202.

Programs

Formula

G.f.: x^2*(1+5*x+4*x^2+5*x^3) / ( (1+x)*(1+x^2)*(x-1)^2 ). - R. J. Mathar, Oct 25 2011
From Wesley Ivan Hurt, Jun 07 2016: (Start)
a(n) = (30*n-41-5*i^(2*n)+(3+3*i)*i^(-n)+(3-3*i)*i^n)/8 where i=sqrt(-1).
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5. (End)
E.g.f.: (20 + (15*x - 23)*cosh(x) + 3*(sin(x) + cos(x) + (5*x - 6)*sinh(x)))/4. - Ilya Gutkovskiy, Jun 07 2016

Extensions

This is a merge of two identical sequences, A151972 and A151975.

A151971 Numbers n such that n^2 - n is divisible by 21.

Original entry on oeis.org

0, 1, 7, 15, 21, 22, 28, 36, 42, 43, 49, 57, 63, 64, 70, 78, 84, 85, 91, 99, 105, 106, 112, 120, 126, 127, 133, 141, 147, 148, 154, 162, 168, 169, 175, 183, 189, 190, 196, 204, 210, 211, 217, 225, 231, 232, 238, 246, 252, 253, 259, 267, 273, 274, 280, 288, 294, 295, 301, 309
Offset: 1

Views

Author

N. J. A. Sloane, Aug 23 2009

Keywords

Comments

Equivalently, numbers that are congruent to {0, 1, 7, 15} mod 21. - Bruno Berselli, Aug 06 2012

Crossrefs

For m^2 == m (mod n), see: n=2: A001477; n=3: A032766; n=4: A042948; n=5: A008851; n=6: A032766; n=7: A047274; n=8: A047393; n=9: A090570; n=10: A008851; n=11: A112651; n=12: A112652; n=13:A112653; n=14: A047274; n=15: A151972; n=16: A151977; n=17: A151978; n=18: A090570; n=19: A151979; n=20: A151980; n=21: A151971; n=22: A112651; n=24: A151973; n=26: A112653; n=30: A151972; n=32: A151983; n=34: A151978; n=38: A151979; n=42: A151971; n=48: A151981; n=64: A151984.
Cf. A215202.

Programs

  • Magma
    [n: n in [0..309] | IsZero((n^2-n) mod 21)]; // Bruno Berselli, Aug 06 2012
    
  • Maple
    A151971:=n->(42*n+14*I^((n-1)*n)-3*I^(2*n)-3)/8-7: seq(A151971(n), n=1..100); # Wesley Ivan Hurt, Jun 07 2016
  • Mathematica
    Select[Range[0,400], Divisible[#^2-#,21]&] (* Harvey P. Dale, Jun 04 2012 *)
  • Maxima
    makelist((42*n+14*%i^((n-1)*n)-3*(-1)^n-3)/8-7, n, 1, 60); /* Bruno Berselli, Aug 06 2012 */

Formula

From Bruno Berselli, Aug 06 2012: (Start)
G.f.: x^2*(1+6*x+8*x^2+6*x^3)/((1+x)*(1-x)^2*(1+x^2)).
a(n) = (42*n +14*i^((n-1)*n) -3*(-1)^n -3)/8 -7, where i=sqrt(-1). (End)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5. - Wesley Ivan Hurt, Jun 07 2016
E.g.f.: (24 + (21*x - 31)*cosh(x) + 7*(sin(x) + cos(x) + (3*x - 4)*sinh(x)))/4. - Ilya Gutkovskiy, Jun 07 2016

A215202 Irregular triangle in which n-th row gives m in 1, ..., n-1 such that m^2 == m (mod n).

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 4, 1, 1, 1, 1, 5, 6, 1, 1, 4, 9, 1, 1, 7, 8, 1, 6, 10, 1, 1, 1, 9, 10, 1, 1, 5, 16, 1, 7, 15, 1, 11, 12, 1, 1, 9, 16, 1, 1, 13, 14, 1, 1, 8, 21, 1, 1, 6, 10, 15, 16, 21, 25, 1, 1, 1, 12, 22, 1, 17, 18, 1, 15, 21, 1, 9, 28, 1, 1, 19, 20, 1, 13
Offset: 2

Views

Author

Eric M. Schmidt, Aug 05 2012

Keywords

Comments

The n-th row has length A034444(n) - 1.
If m appears in row n, then gcd(n,m) appears in the n-th row of A077610. Moreover, if m', distinct from m, also appears in row n, then gcd(n, m) does not equal gcd(n, m').
For odd n and any integer m, m^2 == m (mod n) iff m^2 == m (mod 2n).
Let P(1)={1} and for integers x > 1, let P(x) be the set of distinct prime divisors of x. We can define an equivalence relation ~ on the set of elements in the ring (Z_n, +mod n,*mod n): for all a,b in Z_n (where a,b are the least nonnegative residues modulo n) a ~ b iff P(gcd(a,n)) intersect P(n) is equal to P(gcd(b,n)) intersect P(n). If we include 0 in each row then these elements can represent the equivalence classes. They form a commutative monoid. - Geoffrey Critzer, Feb 13 2016

Examples

			Triangle begins:
1;
1;
1;
1;
1, 3, 4;
1;
1;
1;
1, 5, 6;
1;
1, 4, 9;
1;
1, 7, 8;
1, 6, 10;
1;
1;
1, 9, 10; etc.  - _Bruno Berselli_, Aug 06 2012
		

Crossrefs

For m^2 == m (mod n), see: n=2: A001477; n=3: A032766; n=4: A042948; n=5: A008851; n=6: A032766; n=7: A047274; n=8: A047393; n=9: A090570; n=10: A008851; n=11: A112651; n=12: A112652; n=13: A112653; n=14: A047274; n=15: A151972; n=16: A151977; n=17: A151978; n=18: A090570; n=19: A151979; n=20: A151980; n=21: A151971; n=22: A112651; n=24: A151973; n=26: A112653; n=30: A151972; n=32: A151983; n=34: A151978; n=38: A151979; n=42: A151971; n=48: A151981; n=64: A151984; n=100: A008852; n=1000: A008853.

Programs

  • Magma
    [m: m in [1..n-1], n in [2..40] | m^2 mod n eq m]; // Bruno Berselli, Aug 06 2012
  • Mathematica
    Table[Select[Range[n], Mod[#^2, n] == # &], {n, 2, 30}] // Grid (* Geoffrey Critzer, May 26 2015 *)
  • Sage
    def A215202(n) : return [m for m in range(1, n) if m^2 % n == m];
    

A248711 Concatenations of three numbers A,R,B where R=A+B or R=A-B or R=A*B or R=A/B.

Original entry on oeis.org

100, 101, 110, 111, 121, 122, 132, 133, 143, 144, 154, 155, 165, 166, 176, 177, 187, 188, 198, 199, 200, 202, 211, 212, 220, 221, 231, 242, 253, 263, 264, 275, 284, 286, 297, 300, 303, 312, 313, 321, 330, 331, 341, 352, 362, 363, 374, 385, 393, 396, 400, 404, 413, 414, 422, 431, 440, 441, 451, 462, 473, 482, 484, 495, 500, 505
Offset: 1

Views

Author

Eric Angelini and M. F. Hasler, Oct 11 2014

Keywords

Comments

It is understood that none of A,R,B may have leading zeros.
Terms 101 < a(n) < 200 are exactly the numbers in that range which are in A112651.

Examples

			a(1) = 100 = concat(1,1*0,0).
The first 4-digit terms are 1000 = concat(10,10*0,0), 1019 = concat(10,10-9,9), 1025 = concat(10,10/5,5).
		

Crossrefs

Cf. A112651.

Programs

  • PARI
    is(n)={d=#digits(n);forvec(s=vector(2,i,[1,d-1]),(10^s[1]>10*B=n%10^s[1])&&s[1]>1&&next;(10^s[2]>10*R=n%10^s[2])&&s[2]>s[1]+1&&next;setsearch(Set([B+A=n\10^s[2],A-B,A*B,if(B,A/B)]),R\10^s[1])&&return([A,R\10^s[1],B]),2)}
Showing 1-4 of 4 results.