A112696 Partial sum of Catalan numbers A000108 multiplied by powers of 2.
1, 3, 11, 51, 275, 1619, 10067, 64979, 431059, 2920403, 20119507, 140513235, 992530387, 7078367187, 50896392147, 368577073107, 2685777334227, 19678579249107, 144888698621907, 1071443581980627, 7954422715502547
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..300
Crossrefs
Third column (m=2) of triangle A112705.
Programs
-
Maple
a:=n->sum((binomial(2*j,j))*2^j/(j+1),j=0..n): seq(a(n), n=0..20); # Zerinvary Lajos, Oct 26 2006
-
Mathematica
Table[Sum[Binomial[2*j,j]*2^j/(j+1),{j,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 19 2012 *)
-
Sage
def A112696(): f, c, n = 1, 1, 1 while True: yield f n += 1 c = c * (8*n - 12) // n f += c a = A112696() print([next(a) for in range(21)]) # _Peter Luschny, Nov 30 2016
Formula
a(n) = Sum_{k=0..n} C(k)*2^k, n >= 0, with C(n):=A000108(n).
G.f.: c(2*x)/(1-x), where c(x):=(1-sqrt(1-4*x))/(2*x) is the o.g.f. of Catalan numbers A000108.
a(n) = Sum_{j=0..n} binomial(2*j,j)*2^j/(j+1). - Zerinvary Lajos, Oct 26 2006
Recurrence: (n+1)*a(n) = 3*(3*n-1)*a(n-1) - 4*(2*n-1)*a(n-2). - Vaclav Kotesovec, Oct 19 2012
a(n) ~ 2^(3*n+3)/(7*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 19 2012