cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A112705 Triangle built from partial sums of Catalan numbers A000108 multiplied by powers.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 9, 11, 4, 1, 1, 23, 51, 22, 5, 1, 1, 65, 275, 157, 37, 6, 1, 1, 197, 1619, 1291, 357, 56, 7, 1, 1, 626, 10067, 11497, 3941, 681, 79, 8, 1, 1, 2056, 64979, 107725, 46949, 9431, 1159, 106, 9, 1, 1, 6918, 431059, 1045948, 587621, 140681, 19303, 1821, 137, 10, 1
Offset: 0

Views

Author

Wolfdieter Lang, Oct 31 2005

Keywords

Comments

The column sequences (without leading zeros) begin with A000012 (powers of 1), A112705 (partial sums Catalan), A112696-A112704, for m=0..10.

Examples

			Triangle starts:
  1;
  1, 1;
  1, 2,  1;
  1, 4,  3,   1;
  1, 9,  11,  4,   1;
  1, 23, 51,  22,  5,  1;
  1, 65, 275, 157, 37, 6, 1;
  ...
		

Crossrefs

Row sums give A112706.

Programs

  • Mathematica
    col[m_] := col[m] = CatalanNumber[#]*m^#& /@ Range[0, 20] // Accumulate;
    T[n_, m_] := If[m == 0, 1, col[m][[n - m + 1]]];
    Table[T[n, m], {n, 0, 10}, {m, 0, n}] // Flatten (* Jean-François Alcover, Aug 29 2022 *)
  • PARI
    t(n, m) = if (m==0, 1, if (n==m, 1, sum(kk=0, n-m, m^kk*binomial(2*kk, kk)/(kk+1))));
    tabl(nn) = {for (n=0, nn, for (m=0, n, print1(t(n, m), ", ");); print(););} \\ Michel Marcus, Nov 25 2015

Formula

a(n, m) = sum(C(k)*m^k, k=0..n-m), n>m>0, with C(n):=A000108(n); a(n, n)=1; a(n, 0)=1; a(n, m)=0 if n
G.f. for column m>=0 (without leading zeros): c(m*x)/(1-x), where c(x):=(1-sqrt(1-4*x))/(2*x) is the o.g.f. of Catalan numbers A000108.

A106270 Inverse of number triangle A106268; triangle T(n,k), 0 <= k <= n.

Original entry on oeis.org

1, -1, 1, -2, -1, 1, -5, -2, -1, 1, -14, -5, -2, -1, 1, -42, -14, -5, -2, -1, 1, -132, -42, -14, -5, -2, -1, 1, -429, -132, -42, -14, -5, -2, -1, 1, -1430, -429, -132, -42, -14, -5, -2, -1, 1, -4862, -1430, -429, -132, -42, -14, -5, -2, -1, 1, -16796, -4862, -1430, -429, -132, -42, -14, -5, -2, -1, 1
Offset: 0

Author

Paul Barry, Apr 28 2005

Keywords

Comments

Sequence array for the sequence a(n) = 2*0^n - C(n), where C = A000108 (Catalan numbers). Row sums are A106271. Antidiagonal sums are A106272.
The lower triangular matrix |T| (unsigned case) gives the Riordan matrix R = (c(x), x), a Toeplitz matrix. It is its own so called L-Eigen-matrix (cf. Bernstein - Sloane for such Eigen-sequences, and Barry for such eigentriangles), that is R*R = L*(R - I), with the infinite matrices I (identity) and L with matrix elements L(i, j) = delta(i,j-1) (Kronecker symbol; first upper diagonal with 1s). Thus R = L*(I - R^{-1}), and R^{-1} = I - L^{tr}*R (tr for transposed) is the Riordan matrix (1 - x*c(x), x) given in A343233. (For finite N X N matrices the R^{-1} equation is also valid, but for the other two ones the last row with only zeros has to be omitted.) - Gary W. Adamson and Wolfdieter Lang, Apr 11 2021

Examples

			Triangle (with rows n >= 0 and columns k >= 0) begins as follows:
     1;
    -1,    1;
    -2,   -1,   1;
    -5,   -2,  -1,   1;
   -14,   -5,  -2,  -1,  1;
   -42,  -14,  -5,  -2, -1,  1;
  -132,  -42, -14,  -5, -2, -1,  1;
  -429, -132, -42, -14, -5, -2, -1,  1;
		

Programs

  • Magma
    A106270:= func< n,k | k eq n select 1 else -Catalan(n-k) >;
    [A106270(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jan 09 2023
    
  • Mathematica
    A106270[n_, k_]:= If[k==n, 1, -CatalanNumber[n-k]];
    Table[A106270[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jan 09 2023 *)
  • PARI
    C(n) = binomial(2*n,n)/(n+1); \\ A000108
    T(n, k) = if(k <= n, 2*0^(n-k) - C(n-k), 0); \\ Michel Marcus, Nov 11 2022
    
  • SageMath
    def A106270(n,k): return 1 if (k==n) else -catalan_number(n-k)
    flatten([[A106270(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jan 09 2023

Formula

Number triangle T(n, k) = 2*0^(n-k) - C(n-k) if k <= n, 0 otherwise; Riordan array (2*sqrt(1-4*x)/(1+sqrt(1-4*x)), x) = (c(x)*sqrt(1-4*x), x), where c(x) is the g.f. of A000108.
Sum_{k=0..n} T(n, k) = A106271(n).
Sum_{k=0..floor(n/2)} T(n, k) = A106272(n).
Bivariate g.f.: Sum_{n, k >= 0} T(n,k)*x^n*y^k = (1/(1 - x*y)) * (2 - c(x)), where c(x) is the g.f. of A000108. - Petros Hadjicostas, Jul 15 2019
From G. C. Greubel, Jan 09 2023: (Start)
Sum_{k=0..n} 2^(n-j)*abs(T(n,k)) = A112696(n).
Sum_{k=0..n} 2^k*abs(T(n,k)) = A014318(n). (End)
Showing 1-2 of 2 results.