cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A112706 Row sums of triangle A112705.

Original entry on oeis.org

1, 2, 4, 9, 26, 103, 542, 3529, 26901, 232416, 2233500, 23576045, 270690473, 3353312672, 44520193362, 629960268107, 9456454463204, 149995788999117, 2505304374275816, 43928236200319751, 806397434192280456
Offset: 0

Views

Author

Wolfdieter Lang, Oct 31 2005

Keywords

Crossrefs

Cf. A112705.

Formula

a(n) = Sum_{m=0..n} A112705(n, m).

A112707 Triangle built from partial sums of Catalan numbers multiplied by powers of nonpositive numbers.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 1, 2, -1, 1, 1, -3, 7, -2, 1, 1, 11, -33, 16, -3, 1, 1, -31, 191, -119, 29, -4, 1, 1, 101, -1153, 1015, -291, 46, -5, 1, 1, -328, 7295, -9191, 3293, -579, 67, -6, 1, 1, 1102, -47617, 87037, -39715, 8171, -1013, 92, -7, 1, 1, -3760, 318463, -851186, 500957, -123079, 17131, -1623, 121
Offset: 0

Views

Author

Wolfdieter Lang, Oct 31 2005

Keywords

Comments

The column sequences (without leading zeros) begin with A000012 (powers of 1), A032357(n)*(-1)^n, A064306(n)*(-1)^n, A112710, A112711, A113264-A113269, for m=0.. 10.

Crossrefs

Row sums give A112708. Unsigned row sums give A112709.
Cf. A112705 (similar triangle with powers of positive numbers).

Formula

a(n, m)=sum(C(k)*(-m)^k, k=0..n-m), with C(k):=A000108(k) (Catalan) if n>m>0; a(n, n)=1, a(n, 0)=1, n>=0; a(n, m)=0 if n
G.f. for column m>=0 (without leading zeros): c(-m*x)/(1-x), where c(x):=(1-sqrt(1-4*x))/(2*x) is the o.g.f. of Catalan numbers A000108.

A112696 Partial sum of Catalan numbers A000108 multiplied by powers of 2.

Original entry on oeis.org

1, 3, 11, 51, 275, 1619, 10067, 64979, 431059, 2920403, 20119507, 140513235, 992530387, 7078367187, 50896392147, 368577073107, 2685777334227, 19678579249107, 144888698621907, 1071443581980627, 7954422715502547
Offset: 0

Author

Wolfdieter Lang, Oct 31 2005

Keywords

Crossrefs

Third column (m=2) of triangle A112705.

Programs

Formula

a(n) = Sum_{k=0..n} C(k)*2^k, n >= 0, with C(n):=A000108(n).
G.f.: c(2*x)/(1-x), where c(x):=(1-sqrt(1-4*x))/(2*x) is the o.g.f. of Catalan numbers A000108.
a(n) = Sum_{j=0..n} binomial(2*j,j)*2^j/(j+1). - Zerinvary Lajos, Oct 26 2006
Recurrence: (n+1)*a(n) = 3*(3*n-1)*a(n-1) - 4*(2*n-1)*a(n-2). - Vaclav Kotesovec, Oct 19 2012
a(n) ~ 2^(3*n+3)/(7*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 19 2012

A112697 Partial sum of Catalan numbers (A000108) multiplied by powers of 3.

Original entry on oeis.org

1, 4, 22, 157, 1291, 11497, 107725, 1045948, 10428178, 106126924, 1097913928, 11511677470, 122057782762, 1306480339462, 14098243951822, 153208673236237, 1675240428936307, 18417589741637077, 203464608460961377
Offset: 0

Author

Wolfdieter Lang, Oct 31 2005

Keywords

Crossrefs

Fourth column (m=3) of triangle A112705.
Cf. A000108.

Programs

  • Mathematica
    CoefficientList[Series[(1-Sqrt[1-12*x])/(6*x)/(1-x), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 19 2012 *)
  • PARI
    x='x+O('x^50); Vec((1-sqrt(1-12*x))/(6*x*(1-x))) \\ G. C. Greubel, Mar 17 2017

Formula

a(n) = Sum_{k=0..n} C(k)*3^k, n>=0, with C(n) = A000108(n).
G.f.: c(3*x)/(1-x), where c(x):=(1-sqrt(1-4*x))/(2*x) is the o.g.f. of Catalan numbers (A000108).
Recurrence: (n+1)*a(n) = (13*n-5)*a(n-1) - 6*(2*n-1)*a(n-2). - Vaclav Kotesovec, Oct 19 2012
a(n) ~ 12^(n+1)/(11*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 19 2012

A112698 Partial sum of (Catalan numbers A000108 multiplied by powers of 4).

Original entry on oeis.org

1, 5, 37, 357, 3941, 46949, 587621, 7616357, 101332837, 1375876965, 18987759461, 265554114405, 3755416368997, 53610591434597, 771525112379237, 11181285666076517, 163041321978836837, 2390321854565988197
Offset: 0

Author

Wolfdieter Lang, Oct 31 2005

Keywords

Crossrefs

Fifth column (m=4) of triangle A112705.

Programs

  • Mathematica
    CoefficientList[Series[(1-Sqrt[1-16*x])/(8*x)/(1-x), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 19 2012 *)
    With[{nn=20},Accumulate[4^Range[0,nn] CatalanNumber[Range[0,nn]]]] (* Harvey P. Dale, Mar 11 2023 *)
  • PARI
    x='x+O('x^50); Vec((1-sqrt(1-16*x))/(8*x*(1-x))) \\ G. C. Greubel, Mar 17 2017

Formula

a(n) = Sum_{k=0,..,n} C(k)*4^k, n>=0, with C(n):=A000108(n).
G.f.: c(4*x)/(1-x), where c(x):=(1-sqrt(1-4*x))/(2*x) is the o.g.f. of Catalan numbers A000108.
Recurrence: (n+1)*a(n) = (17*n-7)*a(n-1) - 8*(2*n-1)*a(n-2). - Vaclav Kotesovec, Oct 19 2012
a(n) ~ 16^(n+1)/(15*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 19 2012

Extensions

Definition clarified by Harvey P. Dale, Mar 11 2023

A112699 Partial sum of Catalan numbers A000108 multiplied by powers of 5.

Original entry on oeis.org

1, 6, 56, 681, 9431, 140681, 2203181, 35718806, 594312556, 10090406306, 174113843806, 3044524000056, 53828703687556, 960689055250056, 17284175383375056, 313147365080640681, 5708299647795484431
Offset: 0

Author

Wolfdieter Lang, Oct 31 2005

Keywords

Crossrefs

Sixth column (m=5) of triangle A112705.

Programs

  • Mathematica
    CoefficientList[Series[(1-Sqrt[1-20*x])/(10*x)/(1-x), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 19 2012 *)
  • PARI
    x='x+O('x^50); Vec((1-sqrt(1-20*x))/(10*x*(1-x))) \\ G. C. Greubel, Mar 17 2017

Formula

a(n) = Sum_{k=0,..,n} C(k)*5^k, n>=0, with C(n):=A000108(n).
G.f.: c(5*x)/(1-x), where c(x):=(1-sqrt(1-4*x))/(2*x) is the o.g.f. of Catalan numbers A000108.
Recurrence: (n+1)*a(n) = 3*(7*n-3)*a(n-1) - 10*(2*n-1)*a(n-2). - Vaclav Kotesovec, Oct 19 2012
a(n) ~ 20^(n+1)/(19*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 19 2012

A112700 Partial sum of Catalan numbers A000108 multiplied by powers of 6.

Original entry on oeis.org

1, 7, 79, 1159, 19303, 345895, 6504487, 126597031, 2528447911, 51526205863, 1067116097959, 22394503831975, 475191351108007, 10177980935594407, 219758235960500647, 4778128782752211367, 104526001924311998887
Offset: 0

Author

Wolfdieter Lang, Oct 31 2005

Keywords

Crossrefs

Seventh column (m=6) of triangle A112705.

Programs

  • Maple
    ListTools:-PartialSums([seq(binomial(2*n,n)/(n+1)*6^n,n=0..50)]); # Robert Israel, Jun 28 2018
  • Mathematica
    Accumulate[Table[ (CatalanNumber@ n)*6^n, {n, 0, 16}]] (* James C. McMahon, Jun 11 2024 *)

Formula

a(n) = Sum_{k=0..n} C(k)*6^k, with C(n):=A000108(n).
G.f.: c(6*x)/(1-x), where c(x):=(1-sqrt(1-4*x))/(2*x) is the o.g.f. of Catalan numbers A000108.
Conjecture: (n+1)*a(n) +(-25*n+11)*a(n-1) +12*(2*n-1)*a(n-2)=0. - R. J. Mathar, Jun 08 2016, verified by Robert Israel, Jun 28 2018
0 = a(n)*(+576*a(n+1) -636*a(n+2) +60*a(n+3)) +a(n+1)*(-564*a(n+1) +613*a(n+2) -61*a(n+3)) +a(n+2)*(+11*a(n+2) +a(n+3)) for all n>=0. - Michael Somos, Jun 28 2018

A112701 Partial sum of Catalan numbers (A000108) multiplied by powers of 7.

Original entry on oeis.org

1, 8, 106, 1821, 35435, 741329, 16270997, 369570944, 8613236374, 204812473608, 4949266755812, 121188396669810, 3000342229924222, 74979188061284522, 1888846103011564082, 47915719069874907917, 1222954711282739097587
Offset: 0

Author

Wolfdieter Lang, Oct 31 2005

Keywords

Crossrefs

Column m=7 of triangle A112705.
Partial sums of A156266.

Programs

  • Maple
    f:= gfun:-rectoproc({(n+1)*a(n) +(-29*n+13)*a(n-1) +14*(2*n-1)*a(n-2)=0,a(0)=1,a(1)=8},a(n),remember):
    map(f, [$0..50]); # Robert Israel, Aug 04 2020
  • Mathematica
    CatalanNumber[#]*7^#& /@ Range[0, 20] // Accumulate (* Jean-François Alcover, Aug 29 2022 *)

Formula

a(n) = Sum_{k=0..n} A000108(k)*7^k.
G.f.: c(7*x)/(1-x), where c(x) = (1-sqrt(1-4*x))/(2*x) is the o.g.f. of Catalan numbers A000108.
Conjecture: (n+1)*a(n) +(-29*n+13)*a(n-1) +14*(2*n-1)*a(n-2)=0. - R. J. Mathar, Jun 08 2016
Conjecture verified using the d.e. (28*x^3-29*x^2+x)*y' + (42*x^2-16*x+1)*y=1 satisfied by the g.f. - Robert Israel, Aug 04 2020
a(n) = 7^n*binomial(2*n, n)*(1 - hypergeom([1, n+1/2], [n+2], 28))/(n+1) + (1 - 3*sqrt(3)*i)/14, where i denotes the imaginary units. - Stefano Spezia, Mar 31 2025

A112703 Partial sum of Catalan numbers A000108 multiplied by powers of 9.

Original entry on oeis.org

1, 10, 172, 3817, 95671, 2575729, 72725941, 2124619642, 63681430672, 1947319848190, 60511350647386, 1905278320822060, 60654011063307832, 1949006134928921932, 63131614948174818772, 2059214227480322203177
Offset: 0

Author

Wolfdieter Lang, Oct 31 2005

Keywords

Crossrefs

Tenth column (m=9) of triangle A112705.

Programs

  • Mathematica
    Accumulate[Table[CatalanNumber[n]9^n,{n,0,20}]] (* Harvey P. Dale, Jun 22 2016 *)

Formula

a(n)=sum(C(k)*9^k, k=0..n), n>=0, with C(n):=A000108(n).
G.f.: c(9*x)/(1-x), where c(x):=(1-sqrt(1-4*x))/(2*x) is the o.g.f. of Catalan numbers A000108.
Conjecture: +(n+1)*a(n) +(-37*n+17)*a(n-1) +18*(2*n-1)*a(n-2)=0. - R. J. Mathar, Jun 08 2016

A112704 Partial sum of Catalan numbers A000108 multiplied by powers of 10.

Original entry on oeis.org

1, 11, 211, 5211, 145211, 4345211, 136345211, 4426345211, 147426345211, 5009426345211, 172969426345211, 6051569426345211, 214063569426345211, 7643063569426345211, 275087063569426345211, 9969932063569426345211
Offset: 0

Author

Wolfdieter Lang, Oct 31 2005

Keywords

Crossrefs

Eleventh column (m=10) of triangle A112705.

Formula

a(n)=sum(C(k)*10^k, k=0..n), n>=0, with C(n):=A000108(n).
G.f.: c(10*x)/(1-x), where c(x):=(1-sqrt(1-4*x))/(2*x) is the o.g.f. of Catalan numbers A000108.
Showing 1-10 of 11 results. Next