A112751 Number of numbers of the form 3^i*5^j that are less than or equal to n.
1, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Magma
[&+[MoebiusMu(15*k)*Floor(n/k):k in [1..n]]: n in [1..97]]; // Marius A. Burtea, Jul 30 2019
-
Maple
with(numtheory): seq(add(mobius(15*k)*floor(n/k), k=1..n), n=1..90); # Ridouane Oudra, Jul 29 2019
-
Mathematica
Accumulate[Table[Boole[n == Times @@ ({3, 5}^IntegerExponent[n, {3, 5}])], {n, 1, 100}]] (* Amiram Eldar, May 04 2025 *)
Formula
From Ridouane Oudra, Jul 29 2019: (Start)
a(n) = Card_{ k | A003593(k) <= n }.
a(n) = Sum_{k=1..n} mu(15*k)*floor(n/k), where mu is the Möbius function (A008683).
a(n) = Sum_{k=1..n} (floor(15^k/k)-floor((15^k-1)/k)). (End)
From Ridouane Oudra, Jul 17 2020: (Start)
a(n) = Sum_{i=0..floor(log_5(n))} (floor(log_3(n/5^i)) + 1).
a(n) = Sum_{i=0..floor(log_3(n))} (floor(log_5(n/3^i)) + 1). (End)