cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A112765 Exponent of highest power of 5 dividing n. Or, 5-adic valuation of n.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Reinhard Zumkeller, Sep 18 2005

Keywords

Comments

A027868 gives partial sums.
This is also the 5-adic valuation of Fibonacci(n). See Lengyel link. - Michel Marcus, May 06 2017

Crossrefs

Cf. A343251, A000351 (positions of records, greedy inverse).

Programs

  • Haskell
    a112765 n = fives n 0 where
       fives n e | r > 0     = e
                 | otherwise = fives n' (e + 1) where (n',r) = divMod n 5
    -- Reinhard Zumkeller, Apr 08 2011
    
  • Maple
    A112765 := proc(n)
        padic[ordp](n,5) ;
    end proc: # R. J. Mathar, Jul 12 2016
  • Mathematica
    a[n_] := IntegerExponent[n, 5]; Array[a, 105] (* Jean-François Alcover, Jan 25 2018 *)
  • PARI
    A112765(n)=valuation(n,5); /* Joerg Arndt, Apr 08 2011 */
    
  • Python
    def a(n):
        k = 0
        while n > 0 and n%5 == 0: n //= 5; k += 1
        return k
    print([a(n) for n in range(1, 106)]) # Michael S. Branicky, Aug 06 2021

Formula

Totally additive with a(p) = 1 if p = 5, 0 otherwise.
From Hieronymus Fischer, Jun 08 2012: (Start)
With m = floor(log_5(n)), frac(x) = x-floor(x):
a(n) = Sum_{j=1..m} (1 - ceiling(frac(n/5^j))).
a(n) = m + Sum_{j=1..m} (floor(-frac(n/5^j))).
a(n) = A027868(n) - A027868(n-1).
G.f.: Sum_{j>0} x^5^j/(1-x^5^j). (End)
a(5n) = A055457(n). - R. J. Mathar, Jul 17 2012
Asymptotic mean: lim_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 1/4. - Amiram Eldar, Feb 14 2021
a(n) = 5*Sum_{j=1..floor(log(n)/log(5))} frac(binomial(n, 5^j)*5^(j-1)/n). - Dario T. de Castro, Jul 10 2022