cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 72 results. Next

A379005 Lexicographically earliest infinite sequence such that a(i) = a(j) => v_2(i) = v_2(j), v_3(i) = v_3(j) and v_5(i) = v_5(j), for all i, j, where v_2 (A007814), v_3 (A007949) and v_5 (A112765) give the 2-, 3- and 5-adic valuations of n respectively.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 1, 7, 8, 9, 1, 10, 1, 2, 11, 12, 1, 13, 1, 14, 3, 2, 1, 15, 16, 2, 17, 4, 1, 18, 1, 19, 3, 2, 5, 20, 1, 2, 3, 21, 1, 6, 1, 4, 22, 2, 1, 23, 1, 24, 3, 4, 1, 25, 5, 7, 3, 2, 1, 26, 1, 2, 8, 27, 5, 6, 1, 4, 3, 9, 1, 28, 1, 2, 29, 4, 1, 6, 1, 30, 31, 2, 1, 10, 5, 2, 3, 7, 1, 32, 1, 4, 3, 2, 5, 33, 1, 2, 8, 34, 1, 6, 1, 7, 11
Offset: 1

Views

Author

Antti Karttunen, Dec 15 2024

Keywords

Comments

Restricted growth sequence transform of A355582.
For all i, j:
A379001(i) = A379001(j) => a(i) = a(j),
a(i) = a(j) => A322026(i) = A322026(j),
a(i) = a(j) => A379004(i) = A379004(j).

Crossrefs

Cf. A007814, A007949, A112765, A355582, A379006 (ordinal transform).

Programs

  • PARI
    up_to = 100000;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    v379005 = rgs_transform(vector(up_to, n, [valuation(n,2), valuation(n,3), valuation(n,5)]));
    A379005(n) = v379005[n];

A379001 Lexicographically earliest infinite sequence such that a(i) = a(j) => A046523(i) = A046523(j), v_2(i) = v_2(j), v_3(i) = v_3(j) and v_5(i) = v_5(j), for all i, j, where v_2 (A007814), v_3 (A007949) and v_5 (A112765) give the 2-, 3- and 5-adic valuations of n respectively.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 7, 11, 7, 12, 13, 14, 7, 15, 7, 16, 17, 12, 7, 18, 19, 12, 20, 21, 7, 22, 7, 23, 17, 12, 24, 25, 7, 12, 17, 26, 7, 27, 7, 21, 28, 12, 7, 29, 30, 31, 17, 21, 7, 32, 24, 33, 17, 12, 7, 34, 7, 12, 35, 36, 24, 27, 7, 21, 17, 37, 7, 38, 7, 12, 39, 21, 40, 27, 7, 41, 42, 12, 7, 43, 24, 12, 17, 33, 7, 44, 40, 21, 17, 12, 24, 45, 7, 46, 35
Offset: 1

Views

Author

Antti Karttunen, Dec 15 2024

Keywords

Comments

Restricted growth sequence transform of ordered 4-tuple [A046523(n), A007814(n), A007949(n), A112765(n)].
For all i, j:
A379000(i) = A379000(j) => a(i) = a(j),
a(i) = a(j) => A358230(i) = A358230(j),
a(i) = a(j) => A379002(i) = A379002(j),
a(i) = a(j) => A379005(i) = A379005(j).

Crossrefs

Programs

  • PARI
    up_to = 100000;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };
    v379001 = rgs_transform(vector(up_to, n, [A046523(n), valuation(n,2), valuation(n,3), valuation(n,5)]));
    A379001(n) = v379001[n];

A379004 Lexicographically earliest infinite sequence such that a(i) = a(j) => v_2(i) = v_2(j) and v_5(i) = v_5(j), for all i, j, where v_2 (A007814) and v_5 (A112765) give the 2- and 5-adic valuations of n respectively.

Original entry on oeis.org

1, 2, 1, 3, 4, 2, 1, 5, 1, 6, 1, 3, 1, 2, 4, 7, 1, 2, 1, 8, 1, 2, 1, 5, 9, 2, 1, 3, 1, 6, 1, 10, 1, 2, 4, 3, 1, 2, 1, 11, 1, 2, 1, 3, 4, 2, 1, 7, 1, 12, 1, 3, 1, 2, 4, 5, 1, 2, 1, 8, 1, 2, 1, 13, 4, 2, 1, 3, 1, 6, 1, 5, 1, 2, 9, 3, 1, 2, 1, 14, 1, 2, 1, 3, 4, 2, 1, 5, 1, 6, 1, 3, 1, 2, 4, 10, 1, 2, 1, 15, 1, 2, 1, 5, 4
Offset: 1

Views

Author

Antti Karttunen, Dec 15 2024

Keywords

Comments

Restricted growth sequence transform of A132741, or equally, of the ordered pair [A007814(n), A112765(n)].
For all i, j:
A379005(i) = A379005(j) => a(i) = a(j).
A379003 (after its initial 0) and this sequence are ordinal transforms of each other.

Crossrefs

Cf. A007814, A112765, A132741, A379003 (ordinal transform), A379005.

Programs

  • PARI
    up_to = 100000;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    v379004 = rgs_transform(vector(up_to, n, [valuation(n,2), valuation(n,5)]));
    A379004(n) = v379004[n];

A379002 Lexicographically earliest infinite sequence such that a(i) = a(j) => A046523(i) = A046523(j) and A112765(i) = A112765(j), for all i, j, where A046523 gives the least representative of the prime signature of n and A112765 gives the 5-adic valuation of n.

Original entry on oeis.org

1, 2, 2, 3, 4, 5, 2, 6, 3, 7, 2, 8, 2, 5, 7, 9, 2, 8, 2, 10, 5, 5, 2, 11, 12, 5, 6, 8, 2, 13, 2, 14, 5, 5, 7, 15, 2, 5, 5, 16, 2, 17, 2, 8, 10, 5, 2, 18, 3, 19, 5, 8, 2, 11, 7, 11, 5, 5, 2, 20, 2, 5, 8, 21, 7, 17, 2, 8, 5, 13, 2, 22, 2, 5, 19, 8, 5, 17, 2, 23, 9, 5, 2, 24, 7, 5, 5, 11, 2, 20, 5, 8, 5, 5, 7, 25, 2, 8, 8, 26, 2, 17, 2, 11, 13
Offset: 1

Views

Author

Antti Karttunen, Dec 15 2024

Keywords

Comments

Restricted growth sequence transform of ordered pair [A046523(n), A112765(n)].
For all i, j:
A379001(i) = A379001(j) => a(i) = a(j).

Crossrefs

Programs

  • PARI
    up_to = 100000;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };
    v379002 = rgs_transform(vector(up_to, n, [A046523(n), valuation(n,5)]));
    A379002(n) = v379002[n];

A381836 k/25 is in this list if A053824(k) < A112765(k), i.e. if digitsum(k, 5) < valuation(k, 5).

Original entry on oeis.org

1, 5, 10, 25, 30, 50, 75, 125, 130, 150, 175, 250, 275, 375, 500, 625, 630, 650, 675, 750, 775, 875, 1000, 1250, 1275, 1375, 1500, 1875, 2000, 2500, 3125, 3130, 3150, 3175, 3250, 3275, 3375, 3500, 3750, 3775, 3875, 4000, 4375, 4500, 5000, 5625, 6250, 6275, 6375
Offset: 1

Views

Author

Peter Luschny, Mar 08 2025

Keywords

Crossrefs

Cf. A371176 (base 2), A381838 (base 3), A381837 (base 4).

Programs

  • Maple
    aList := upto -> local k; [seq(k/25, k in select(n -> add(convert(n, base, 5)) < padic[ordp](n, 5), [seq(25..upto,25)]))]: aList(160000);
  • Mathematica
    Select[Range[160000],DigitSum[#,5]Stefano Spezia, Mar 08 2025 *)
  • SageMath
    def aList(upto, b): return [n/b^2 for n in srange(b^2, upto, b^2) if sum(n.digits(b)) < valuation(n, b)]
    print(aList(160000, 5))

A127428 v_5( (10n)! ) - v_5( (5n)! ), where v_p(N) is the p-adic valuation defined in A112765.

Original entry on oeis.org

0, 1, 2, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 60, 61, 62, 63, 64, 66, 67, 68, 69, 70, 72, 73, 74, 75, 76, 80, 81, 82, 83, 84, 86, 87, 88, 89, 90, 92, 93
Offset: 0

Views

Author

N. J. A. Sloane, Apr 02 2007

Keywords

Crossrefs

v_5(n) is given in A112765. Cf. A001511, A127427.

Programs

  • Maple
    A127428 := proc(n)
        padic[ordp]((10*n)!,5)-padic[ordp]((5*n)!,5) ;
    end proc:
    seq(A127428(n),n=0..100) ; # R. J. Mathar, Mar 29 2017
  • PARI
    a(n) = valuation((10*n)!, 5) - valuation((5*n)!, 5); \\ Michel Marcus, Jul 29 2017

Formula

a(n) - n = a( [(n+2)/5] ).

Extensions

Typo in name corrected by Michel Marcus, Jul 29 2017

A195760 G.f.: A(x) = exp( Sum_{n>=1} 5*5^A112765(n) * x^n/n ), where A112765 is the exponent of the highest power of 5 dividing n.

Original entry on oeis.org

1, 5, 15, 35, 70, 130, 230, 390, 635, 995, 1515, 2255, 3290, 4710, 6620, 9160, 12505, 16865, 22485, 29645, 38695, 50055, 64215, 81735, 103245, 129505, 161405, 199965, 246335, 301795, 367855, 446255, 538965, 648185, 776345, 926265, 1101155, 1304615, 1540635
Offset: 0

Views

Author

Paul D. Hanna, Sep 23 2011

Keywords

Examples

			G.f.: A(x) = 1 + 5*x + 15*x^2 + 35*x^3 + 70*x^4 + 130*x^5 + 230*x^6 +...
log(A(x)) = 5*x + 5*x^2/2 + 5*x^3/3 + 5*x^4/4 + 25*x^5/5 + 5*x^6/6 + 5*x^7/7 + 5*x^8/8 + 5*x^9/9 + 25*x^10/10 +...
The coefficients in the QUINTISECTIONS of g.f. A(x) begin:
Q0: [1, 130, 1515, 9160, 38695, 129505, 367855, 926265, 2128510, ...];
Q1: [5, 230, 2255, 12505, 50055, 161405, 446255, 1101155, 2491030, ...];
Q2: [15, 390, 3290, 16865, 64215, 199965, 538965, 1304615, 2907440, ...];
Q3: [35, 635, 4710, 22485, 81735, 246335, 648185, 1540635, 3384660, ...];
Q4: [70, 995, 6620, 29645, 103245, 301795, 776345, 1813595, 3930245, ...].
The coefficients in the products Q2*Q3 and Q1*Q4 begin:
Q2(x)*Q3(x): [525, 23175, 433450, 4853600, 38447875, 236756775, ...];
Q1(x)*Q4(x): [350, 21075, 419800, 4789900, 38209000, 235990975, ...];
where Q2(x)*Q3(x) - Q1(x)*Q4(x) = 175*(1-x)^6/R(x)^2, and
R(x) = 1 - 9*x + 36*x^2 - 84*x^3 + 126*x^4 - 130*x^5 + 120*x^6 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(N=ceil(log(n+6)/log(5)));polcoeff(1/(1-x+x*O(x^n))^5/prod(k=1,N,(1-x^(5^k) +x*O(x^n))^4),n)}
    
  • PARI
    {a(n)=local(L=sum(m=1, n, 5*5^valuation(m, 5)*x^m/m)+x*O(x^n)); polcoeff(exp(L), n)}

Formula

G.f.: A(x) = 1/(1-x)^5 * Product_{n>=1} 1/(1 - x^(5^n))^4.
G.f. satisfies: A(x) = A(x^5)*(1-x^5)/(1-x)^5.
Let the QUINTISECTIONS of g.f. A(x) be defined by:
A(x) = Q0(x^5) + x*Q1(x^5) + x^2*Q3(x^5) + x^3*Q3(x^5) + x^4*Q4(x^5),
then:
_ Q0(x) = (1 + 121*x + 381*x^2 + 121*x^3 + x^4)/R(x)
_ Q1(x) = 5*(1 + 37*x + 73*x^2 + 14*x^3)/R(x)
_ Q2(x) = 5*(3 + 51*x + 64*x^2 + 7*x^3)/R(x)
_ Q3(x) = 5*(7 + 64*x + 51*x^2 + 3*x^3)/R(x)
_ Q4(x) = 5*(14 + 73*x + 37*x^2 + 1*x^3)/R(x)
where R(x) = (1-x)^5 * Product_{n>=0} (1 - x^(5^n))^4.
Further, the quintisections are related by:
_ Q2(x)*Q3(x) - Q1(x)*Q4(x) = 175*(1-x)^6/R(x)^2.

A229291 n is in the sequence if n is prime, (n-1)/5^A112765(n-1) is a squarefree number, A112765(n-1) < 3 and every prime divisor of n-1 is in the sequence.

Original entry on oeis.org

2, 3, 5, 7, 11, 23, 31, 43, 47, 67, 71, 139, 151, 211, 283, 311, 331, 431, 463, 659, 683, 691, 863, 907, 947, 967, 1051, 1151, 1291, 1303, 1319, 1367, 1427, 1511, 1699, 1867, 1979, 1987, 2011, 2111, 2131, 2311, 2351, 2531, 3011, 3023, 3083, 3323, 3851, 4099
Offset: 1

Views

Author

Keywords

Comments

If n is in A226963 then n is some product of elements of this sequence.

Crossrefs

Programs

  • Mathematica
    fa = FactorInteger; free[n_] := n == Product[fa[n][[i, 1]], {i,
      Length[fa[n]]}]; Os[b_, 1] = True; Os[b_, 2] = True; Os[ b_, b_] = True; Os[b_, n_] := Os[b, n] = PrimeQ[n] && free[(n - 1)/b^IntegerExponent[n - 1,b]] && IntegerExponent[n - 1, b] < 3 && Union@Table[Os[b, fa[n - 1][[i, 1]]], {i, Length[fa[n - 1]]}] == {True}; G[b_] := Select[Prime [Range[2000]], Os[b, #] &]; G[5]

A289772 a(n) is the numerator of b(n) where b(n) = 1/(3*(1+2*A112765(n) - b(n-1))) and b(0) = 0, where A112765(n) is the 5-adic valuation of n.

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 2, 5, 3, 4, 1, 5, 4, 7, 3, 2, 3, 7, 4, 5, 1, 4, 3, 5, 2, 1, 3, 8, 5, 7, 2, 11, 9, 16, 7, 5, 8, 19, 11, 14, 3, 13, 10, 17, 7, 4, 5, 11, 6, 7, 1, 8, 7, 13, 6, 5, 9, 22, 13, 17, 4, 19, 15, 26, 11, 7, 10, 23, 13, 16, 3, 11, 8, 13, 5, 2, 5, 13, 8, 11, 3
Offset: 0

Views

Author

Michel Marcus, Jul 12 2017

Keywords

Comments

For n>0, a(n)/A289773(n) lists the rationals of a quinary analog of the Calkin-Wilf tree. See the Ponton link.

Examples

			Tree of rationals begin:
0;
1/3;
1/2, 2/3, 1, 1/6, 2/5;
5/9, 3/4, 4/3, 1/5, 5/12, 4/7, 7/9, 3/2, 2/9, 3/7, 7/12, 4/5, 5/3, 1/4, 4/9, 3/5, 5/6, 2, 1/9, 3/8, 8/15, 5/7, 7/6, 2/11, 11/27;
...
		

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; 1/(3*(1+2*padic:-ordp(n,5)-procname(n-1))) end proc:
    b(0):= 0:
    map(numer@b, [$0..100]); # Robert Israel, Jul 12 2017
  • Mathematica
    a[0] = 0; a[n_] := a[n] = 1/(3 (1 + 2 IntegerExponent[n, 5] - a[n - 1])); Table[Numerator@ a@ n, {n, 0, 80}] (* Michael De Vlieger, Jul 12 2017 *)
  • PARI
    b(n) = if (n==0, 0, 1/(3*(1+2*valuation(n, 5) - b(n-1))));
    lista(nn) = for (n=0, nn, print1(numerator(b(n)), ", "));

A289773 a(n) is the denominator of b(n) where b(n) = 1/(3*(1+2*A112765(n) - b(n-1))) and b(0) = 0, with A112765(n) being the 5-adic valuation of n.

Original entry on oeis.org

1, 3, 2, 3, 1, 6, 5, 9, 4, 3, 5, 12, 7, 9, 2, 9, 7, 12, 5, 3, 4, 9, 5, 6, 1, 9, 8, 15, 7, 6, 11, 27, 16, 21, 5, 24, 19, 33, 14, 9, 13, 30, 17, 21, 4, 15, 11, 18, 7, 3, 8, 21, 13, 18, 5, 27, 22, 39, 17, 12, 19, 45, 26, 33, 7, 30, 23, 39, 16, 9, 11, 24, 13, 15, 2, 15, 13
Offset: 0

Views

Author

Michel Marcus, Jul 12 2017

Keywords

Comments

For n>0, A289772(n)/a(n) lists the rationals of a quinary analog of the Calkin-Wilf tree. See the Ponton link.

Examples

			Tree of rationals begin:
0;
1/3;
1/2, 2/3, 1, 1/6, 2/5;
5/9, 3/4, 4/3, 1/5, 5/12, 4/7, 7/9, 3/2, 2/9, 3/7, 7/12, 4/5, 5/3, 1/4, 4/9, 3/5, 5/6, 2, 1/9, 3/8, 8/15, 5/7, 7/6, 2/11, 11/27;
...
		

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; 1/(3*(1+2*padic:-ordp(n,5)-procname(n-1))) end proc:
    b(0):= 0:
    map(denom@b, [$0..100]); # Robert Israel, Jul 12 2017
  • Mathematica
    a[0] = 0; a[n_] := a[n] = 1/(3 (1 + 2 IntegerExponent[n, 5] - a[n - 1])); Table[Denominator@ a@ n, {n, 0, 76}] (* Michael De Vlieger, Jul 12 2017 *)
  • PARI
    b(n) = if (n==0, 0, 1/(3*(1+2*valuation(n, 5) - b(n-1))));
    lista(nn) = for (n=0, nn, print1(denominator(b(n)), ", "));
Showing 1-10 of 72 results. Next