A272400
Square array read by antidiagonals upwards in which T(n,k) is the product of the n-th noncomposite number and the sum of the divisors of k, n>=1, k>=1.
Original entry on oeis.org
1, 2, 3, 3, 6, 4, 5, 9, 8, 7, 7, 15, 12, 14, 6, 11, 21, 20, 21, 12, 12, 13, 33, 28, 35, 18, 24, 8, 17, 39, 44, 49, 30, 36, 16, 15, 19, 51, 52, 77, 42, 60, 24, 30, 13, 23, 57, 68, 91, 66, 84, 40, 45, 26, 18, 29, 69, 76, 119, 78, 132, 56, 75, 39, 36, 12, 31, 87, 92, 133, 102, 156, 88, 105, 65, 54, 24, 28
Offset: 1
The corner of the square array begins:
1, 3, 4, 7, 6, 12, 8, 15, 13, 18...
2, 6, 8, 14, 12, 24, 16, 30, 26, 36...
3, 9, 12, 21, 18, 36, 24, 45, 39, 54...
5, 15, 20, 35, 30, 60, 40, 75, 65, 90...
7, 21, 28, 49, 42, 84, 56, 105, 91, 126...
11, 33, 44, 77, 66, 132, 88, 165, 143, 198...
13, 39, 52, 91, 78, 156, 104, 195, 169, 234...
17, 51, 68, 119, 102, 204, 136, 255, 221, 306...
19, 57, 76, 133, 114, 228, 152, 285, 247, 342...
23, 69, 92, 161, 138, 276, 184, 345, 299, 414...
...
-
Table[If[# == 1, 1, Prime[# - 1]] DivisorSigma[1, k] &@(n - k + 1), {n, 12}, {k, n}] // Flatten (* Michael De Vlieger, Apr 28 2016 *)
A195896
Numbers of the form 2*p-1 or 3*p-1 where p is 1 or a prime.
Original entry on oeis.org
1, 2, 3, 5, 8, 9, 13, 14, 20, 21, 25, 32, 33, 37, 38, 45, 50, 56, 57, 61, 68, 73, 81, 85, 86, 92, 93, 105, 110, 117, 121, 122, 128, 133, 140, 141, 145, 157, 158, 165, 176, 177, 182, 193, 200, 201, 205, 212, 213, 217, 218, 225, 236, 248, 253, 261, 266, 273, 277, 290, 297, 301, 302, 308
Offset: 1
a(1)=1 because p=1 and 2*1 - 1 = 1;
a(2)=2 because p=1 and 3*1 - 1 = 2;
a(3)=3 because p=2 and 2*2 - 1 = 3;
a(4)=5 because p=2 and 3*3 - 1 = 5 or p=3 and p=2 and 3*2 - 1 = 5;
a(5)=8 because p=3 and 3*3 - 1 = 8.
-
isA195896 := proc(n)
for p in {(n+1)/2,(n+1)/3} do
if type(p,'integer') then
if isprime(p) or p = 1 then
return true;
end if;
end if;
end do;
false ;
end proc:
for n from 1 to 400 do
if isA195896(n) then
printf("%d,",n) ;
end if;
end do: # R. J. Mathar, Oct 15 2011
-
Union[Flatten[Join[{1,2},{2#-1,3#-1}&/@Prime[Range[50]]]]] (* Harvey P. Dale, Mar 27 2015 *)
A363473
Triangle read by rows: T(n, k) = k * prime(n - k + A061395(k)) for 1 < k <= n, and T(n, 1) = A008578(n).
Original entry on oeis.org
1, 2, 4, 3, 6, 9, 5, 10, 15, 8, 7, 14, 21, 12, 25, 11, 22, 33, 20, 35, 18, 13, 26, 39, 28, 55, 30, 49, 17, 34, 51, 44, 65, 42, 77, 16, 19, 38, 57, 52, 85, 66, 91, 24, 27, 23, 46, 69, 68, 95, 78, 119, 40, 45, 50, 29, 58, 87, 76, 115, 102, 133, 56, 63, 70, 121, 31, 62, 93, 92, 145, 114, 161, 88, 99, 110, 143, 36
Offset: 1
Triangle begins:
n\k : 1 2 3 4 5 6 7 8 9 10 11 12 13
=====================================================================
1 : 1
2 : 2 4
3 : 3 6 9
4 : 5 10 15 8
5 : 7 14 21 12 25
6 : 11 22 33 20 35 18
7 : 13 26 39 28 55 30 49
8 : 17 34 51 44 65 42 77 16
9 : 19 38 57 52 85 66 91 24 27
10 : 23 46 69 68 95 78 119 40 45 50
11 : 29 58 87 76 115 102 133 56 63 70 121
12 : 31 62 93 92 145 114 161 88 99 110 143 36
13 : 37 74 111 116 155 138 203 104 117 130 187 60 169
etc.
-
T(n, k) = { if(k==1, if(n==1, 1, prime(n-1)), i=floor((k+1)/2);
while(k % prime(i) != 0, i=i-1); k*prime(n-k+i)) }
-
def prime(n): return sloane.A000040(n)
def A061395(n): return prime_pi(factor(n)[-1][0]) if n > 1 else 0
def T(n, k):
if k == 1: return prime(n - 1) if n > 1 else 1
return k * prime(n - k + A061395(k))
for n in range(1, 11): print([T(n,k) for k in range(1, n+1)])
# Peter Luschny, Jan 07 2024
Showing 1-3 of 3 results.
Comments