A112794 Primes such that the sum of the predecessor and successor primes is divisible by 5.
5, 11, 19, 41, 71, 73, 89, 97, 101, 109, 137, 149, 181, 229, 241, 281, 293, 311, 349, 359, 389, 397, 409, 419, 421, 433, 449, 457, 461, 487, 541, 557, 587, 631, 701, 709, 743, 751, 787, 811, 859, 881, 887, 919, 937, 991, 997, 1009, 1021, 1033, 1049, 1051, 1063
Offset: 1
Examples
a(1) = 5 because prevprime(5) + nextprime(5) = 3 + 7 = 10 = 5 * 2. a(2) = 11 because prevprime(11) + nextprime(11) = 7 + 13 = 20 = 5 * 4. a(3) = 19 because prevprime(19) + nextprime(19) = 17 + 23 = 40 = 5 * 8. a(4) = 41 because prevprime(41) + nextprime(41) = 37 + 43 = 80 = 5 * 16.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Mathematica
Prime@ Select[Range[2, 179], Mod[Prime[ # - 1] + Prime[ # + 1], 5] == 0 &] (* Robert G. Wilson v *) Select[Partition[Prime[Range[200]],3,1],Divisible[#[[1]]+#[[3]],5]&] [[All,2]] (* Harvey P. Dale, May 18 2019 *)
Formula
Extensions
Corrected and extended by Robert G. Wilson v, Jan 05 2006