cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A112797 Pierpont 3-almost primes. 3-almost primes of form (2^K)*(3^L)+1.

Original entry on oeis.org

28, 244, 325, 385, 730, 1025, 1729, 2188, 5185, 6562, 7777, 16385, 26245, 36865, 46657, 49153, 55297, 82945, 93313, 221185, 354295, 419905, 531442, 559873, 589825, 663553, 708589, 884737, 1119745, 1572865, 1594324, 1889569, 2985985
Offset: 1

Views

Author

Jonathan Vos Post, Nov 08 2005

Keywords

Examples

			a(1) = 28 = (2^0)*(3^3)+1 = 2 * 2 * 7.
a(2) = 244 = (2^0)*(3^5)+1 = 2 * 2 * 61.
a(3) = 325 = (2^2)*(3^4)+1 = 5 * 5 * 13.
a(4) = 385 = (2^7)*(3^1)+1 = 5 * 7 * 11.
a(11) = 7777 = (2^5)*(3^5)+1 = 7 * 11 * 101.
a(115) = 94143178828 = (2^0)*(3^23)+1 = 2 * 2 * 23535794707.
a(119) = 137438953473 = (2^37)*(3^0)+1 = 3 * 1777 * 25781083.
a(196) = 281474976710657 = (2^48)*(3^0)+1 = 193 * 65537 * 22253377.
		

Crossrefs

Intersection of A014612 and A055600.
A005109 gives the Pierpont primes, which are primes of the form (2^K)*(3^L)+1.
A113432 gives the Pierpont semiprimes, 2-almost primes of the form (2^K)*(3^L)+1.
A111344 gives the Pierpont 4-almost primes, of the form (2^K)*(3^L)+1.
A111345 gives the Pierpont 5-almost primes, of the form (2^K)*(3^L)+1.
A111346 gives the Pierpont 6-almost primes, of the form (2^K)*(3^L)+1.
A113739 gives the Pierpont 7-almost primes, of the form (2^K)*(3^L)+1.
A113740 gives the Pierpont 8-almost primes, of the form (2^K)*(3^L)+1.
A113741 gives the Pierpont 9-almost primes, of the form (2^K)*(3^L)+1.

Programs

  • Mathematica
    Take[Select[2^#[[1]] 3^#[[2]] + 1 & /@ Tuples[Range[0, 20], 2],
    PrimeOmega[ #]  ==  3 &] // Union, 40] (* Harvey P. Dale, Jan 02 2021 *)
  • PARI
    list(lim)=my(v=List(), L=lim\1-1); for(e=0, logint(L, 3), my(t=3^e); while(t<=L, if(bigomega(t+1)==3, listput(v, t+1)); t*=2)); Set(v) \\ Charles R Greathouse IV, Feb 01 2017

Formula

a(n) is in this sequence iff there exist nonnegative integers K and L such that Omega((2^K)*(3^L)+1) = 3.

Extensions

Extended by Ray Chandler, Nov 08 2005