cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A112849 Number of congruence classes (epimorphisms/vertex partitionings induced by graph endomorphisms) of undirected cycles of even length: |C(C_{2*n})|.

Original entry on oeis.org

1, 4, 11, 36, 127, 463, 1717, 6436, 24311, 92379, 352717, 1352079, 5200301, 20058301, 77558761, 300540196, 1166803111, 4537567651, 17672631901, 68923264411, 269128937221, 1052049481861, 4116715363801, 16123801841551, 63205303218877, 247959266474053, 973469712824057, 3824345300380221, 15033633249770521
Offset: 1

Views

Author

Martin Alexander Michels (martinmichels(AT)t-online.de), Sep 24 2005

Keywords

References

  • M. A. Michels, About The Structure of Graph Endomorphisms, Diploma thesis, University of Oldenburg, Germany, 2005.

Crossrefs

Programs

  • Magma
    [1] cat [1 + (1/2)*Binomial(2*n-1, n-1) + (1/2)*Binomial(2*n-1, n): n in [2..30]]; // Vincenzo Librandi, Feb 26 2017
    
  • Maple
    egf := n->exp(exp(x)*(1-(GAMMA(n,x)/GAMMA(n)))):
    a := n->`if`(n=1,1,(2*n)!*coeff(series(egf(n),x,2*n+1),x,2*n)):
    seq(a(n),n=1..29); # Peter Luschny, Apr 05 2011
  • Mathematica
    Join[{1}, Table[1 + (1/2) Binomial[2 n - 1, n - 1] + (1/2)Binomial[2 n - 1, n], {n, 2, 30}]] (* Vincenzo Librandi, Feb 26 2017 *)
  • PARI
    a(n) = if (n==1, 1, 1 + (binomial(2*n-1, n-1) + binomial(2*n-1, n))/2); \\ Michel Marcus, Feb 26 2017

Formula

|C(C_2n)| = 1 + (1/2)*binomial(2*n-1, n-1) + (1/2)*binomial(2*n-1, n), n > 1.
a(n) = A260878(n) for n >= 2. - Alois P. Heinz, Aug 06 2015
Conjecture: n*(3*n - 5)*a(n) + (-15*n^2 + 31*n - 12)*a(n-1) + 2*(3*n - 2)*(2*n - 3)*a(n-2) = 0. - R. J. Mathar, Aug 07 2015