A112857 Triangle T(n,k) read by rows: number of Green's R-classes in the semigroup of order-preserving partial transformations (of an n-element chain) consisting of elements of height k (height(alpha) = |Im(alpha)|).
1, 1, 1, 1, 3, 1, 1, 7, 5, 1, 1, 15, 17, 7, 1, 1, 31, 49, 31, 9, 1, 1, 63, 129, 111, 49, 11, 1, 1, 127, 321, 351, 209, 71, 13, 1, 1, 255, 769, 1023, 769, 351, 97, 15, 1, 1, 511, 1793, 2815, 2561, 1471, 545, 127, 17, 1, 1, 1023, 4097, 7423, 7937, 5503, 2561, 799, 161, 19, 1
Offset: 0
Examples
T(3,2) = 5 because in a regular semigroup of transformations the Green's R-classes coincide with convex partitions of subsets of {1,2,3} with convex classes (modulo the subsets): {1}, {2}/{1}, {3}/{2}, {3}/{1,2}, {3}/{1}, {2,3} Triangle T(n,k) (with rows n >= 0 and columns k = 0..n) begins: 1; 1, 1; 1, 3, 1; 1, 7, 5, 1; 1, 15, 17, 7, 1; 1, 31, 49, 31, 9, 1; 1, 63, 129, 111, 49, 11, 1; 1, 127, 321, 351, 209, 71, 13, 1; 1, 255, 769, 1023, 769, 351, 97, 15, 1; 1, 511, 1793, 2815, 2561, 1471, 545, 127, 17, 1; 1, 1023, 4097, 7423, 7937, 5503, 2561, 799, 161, 19, 1; ... As to matrix M, top row of M^3 = (1, 7, 5, 1, 0, 0, 0, ...)
Links
- Peter Bala, A 4-parameter family of embedded Riordan arrays
- Peter Bala, A note on the diagonals of a proper Riordan Array
- Harry Crane, Left-right arrangements, set partitions, and pattern avoidance, Australasian Journal of Combinatorics, 61(1) (2015), 57-72.
- A. Laradji and A. Umar, Combinatorial results for semigroups of order-preserving partial transformations, Journal of Algebra 278, (2004), 342-359.
- A. Laradji and A. Umar, Combinatorial results for semigroups of order-decreasing partial transformations, J. Integer Seq. 7 (2004), 04.3.8.
Crossrefs
Programs
-
Maple
A112857 := proc(n,k) if k=0 or k=n then 1; elif k <0 or k>n then 0; else 2*procname(n-1,k)+procname(n-1,k-1) ; end if; end proc: # R. J. Mathar, Jun 20 2011
-
Mathematica
Table[Abs[1 + (-1)^k*2^(n - k + 1)*Sum[ Binomial[n - 2 j - 2, k - 2 j - 1], {j, 0, Floor[k/2]}]] - 4 Boole[And[n == 1, k == 0]], {n, 0, 10}, {k, 0, n}] // Flatten (* Michael De Vlieger, Nov 24 2016 *)
Formula
T(n,k) = Sum_{j = k..n} C(n,j)*C(j-1,k-1).
T(n,k) = 2*T(n-1,k) + T(n-1,k-1) for n >= 2 and 1 <= k <= n-1 with T(n,0) = 1 = T(n,n) for n >= 0.
n-th row = top row of M^n, deleting the zeros, where M is an infinite square production matrix with (1,1,1,...) as the superdiagonal and (1,2,2,2,...) as the main diagonal. - Gary W. Adamson, Feb 06 2012
From Peter Bala, Mar 05 2018 (Start):
The following remarks are particular cases of more general results for Riordan arrays of the form (f(x), x/(1 - k*x)).
Let R(n,x) denote the n-th row polynomial of this triangle. The polynomial R(n,2*x) has the e.g.f. Sum_{k = 0..n} T(n,k)*(2*x)^k/k!. The e.g.f. for the n-th diagonal of the triangle (starting at n = 0 for the main diagonal) equals exp(x) * the e.g.f. for the polynomial R(n,2*x). For example, when n = 3 we have exp(x)*(1 + 7*(2*x) + 5*(2*x)^2/2! + (2*x)^3/3!) = 1 + 15*x + 49*x^2/2! + 111*x^3/3! + 209*x^4/4! + ....
Let P(n,x) = Sum_{k = 0..n} T(n,k)*x^(n-k) denote the n-th row polynomial in descending powers of x. Then P(n,x) is the n-th degree Taylor polynomial of the function (1 + 2*x)^n/(1 + x) about 0. For example, for n = 4 we have (1 + 2*x)^4/(1 + x) = x^4 + 15*x^3 + 17*x^2 + 7*x + 1 + O(x^5).
See A118801 for a signed version of this triangle and A145661 for a signed version of the row reversed triangle. (End)
Bivariate o.g.f.: Sum_{n,k>=0} T(n,k)*x^n*y^k = (1 - 2*x)/((1 - x)*(1 - 2*x - x*y)). - Petros Hadjicostas, Feb 14 2021
The matrix inverse of the Lucas triangle A029635 is -T(n, k)/(-2)^(n-k+1). - Peter Luschny, Dec 22 2024
Comments