A112969 a(n) = a(n-1)^4 + a(n-2)^4 for n >= 2 with a(0) = 0, a(1) = 1.
0, 1, 1, 2, 17, 83537, 48698490414981559682, 5624216052381164150697569400035392464306474190030694298257552124199835791859537
Offset: 0
Examples
a(3) = 1^4 + 1^4 = 2. a(4) = 1^4 + 2^4 = 17. a(5) = 2^4 + 17^4 = 83537. a(6) = 17^4 + 83537^4 = 48698490414981559682.
Links
- Eric Weisstein's World of Mathematics, Quartic Equation.
Programs
-
Mathematica
RecurrenceTable[{a[1] ==1, a[2] == 1, a[n] == a[n-1]^4 + a[n-2]^4}, a, {n, 1, 8}] (* Vaclav Kotesovec, Dec 18 2014 *)
Formula
a(n) ~ c^(4^n), where c = 1.0111288972169538887655499395580320278253918666919181401824606983217263409... . - Vaclav Kotesovec, Dec 18 2014
Extensions
Name edited by Petros Hadjicostas, Nov 03 2019
a(0)=0 prepended by Alois P. Heinz, Sep 15 2023
Comments