A112993 Exclusionary cubes: cubes of the terms in A112994.
8, 27, 343, 512, 19683, 79507, 103823, 110592, 140608, 148877, 250047, 314432, 778688, 3869893, 5088448, 6539203, 7077888, 18191447, 54010152, 67917312, 75686967, 96071912, 102503232, 109215352, 115501303, 146363183, 202262003, 224755712
Offset: 1
References
- H. Ibstedt, Solution to Problem 2623, "Exclusionary Powers", pp. 346-9, Journal of Recreational Mathematics, Vol. 32 No.4 2003-4, Baywood NY.
- Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 60.
Links
- N. J. A. Sloane, Table of n, a(n) for n = 1..42 [From the Clifford Pickover link. Conjectured to be the full list of terms.]
- Clifford A. Pickover, Extreme Challenges in Mathematics and Morals
Crossrefs
Cf. A112994.
Programs
-
Python
def ok(n): s = str(n) return len(s) == len(set(s)) and set(s) & set(str(n**3)) == set() print([k**3 for k in range(7659) if ok(k)]) # Michael S. Branicky, Aug 27 2021
-
Python
# version for verifying full sequence from itertools import permutations def no_repeated_digits(): for d in range(1, 11): for p in permutations("0123456789", d): if p[0] == '0': continue yield int("".join(p)) def afull(): alst = [] for k in no_repeated_digits(): if set(str(k)) & set(str(k**3)) == set(): alst.append(k**3) return alst print(afull()) # Michael S. Branicky, Aug 27 2021
Extensions
Corrected by N. J. A. Sloane, May 22 2008
Comments