cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A113000 Numbers n such that n, n+1, n+2 and n+3 are 1,2,3,4-almost primes.

Original entry on oeis.org

193, 421, 661, 1093, 1657, 2137, 2341, 2593, 6217, 7057, 8101, 9817, 12421, 12853, 15121, 16033, 16417, 17257, 17881, 19813, 20641, 21817, 25033, 25657, 27337, 28921, 30661, 31081, 31321, 31333, 32377, 35521, 36457, 38281, 40693, 45553
Offset: 1

Views

Author

Zak Seidov, Jan 03 2006

Keywords

Comments

Subsequence of A112998: a(1) = 193 = A112998(3), a(2) = 421= A112998(6), a(3) = 661 = A112998(8). - Zak Seidov, Oct 14 2012

Examples

			193 is prime, 194=2*97 is semiprime, 195=3*5*13 is 3-almost prime, 196=2*2*7*7 is 4-almost prime.
		

Crossrefs

Cf. A112998.

Programs

  • Magma
    [n: n in PrimesUpTo(5*10^4) | forall{k: k in [1..3] | &+[f[j, 2]: j in [1..#f]] eq k+1 where f is Factorization(n+k)}]; // Vincenzo Librandi, Sep 24 2012
    
  • Mathematica
    Do[p=Prime[n];If[Table[Total[FactorInteger[p+k]][[2]], {k, 3}]=={2, 3, 4}, Print[p]], {n, 1, 10000}]
  • PARI
    list(lim)=my(v=List(), L=(lim+2)\3, t); forprime(p=3, L\3, forprime(q=3, min(L\p, p), t=3*p*q-2; if(t%12==1 && isprime(t) && isprime((t+1)/2) && bigomega(t+3)==4, listput(v, t)))); Set(v) \\ Charles R Greathouse IV, Feb 01 2017

Extensions

Edited by Charles R Greathouse IV, Apr 20 2010