cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A113008 Numbers n such that n, n+1, n+2, n+3 and n+4 are respectively 1,2,3,4,5-almost primes.

Original entry on oeis.org

15121, 35521, 52321, 117841, 235441, 313561, 398821, 516421, 520021, 531121, 570601, 623641, 761113, 838561, 941041, 1117321, 1190821, 1317361, 1333621, 1336177, 1372081, 1413793, 1424041, 1431361, 1488901, 1513921, 1560121
Offset: 1

Views

Author

Zak Seidov, Jan 03 2006

Keywords

Comments

All listed terms are congruent to 1 modulo 12.

Examples

			15121 is prime (or 1-almost prime), 15122=2*7561 is semiprime (or 2-almost prime), 15123=3*71*71 is 3-almost prime, 15124=2*2*29*199 is 4-almost prime, 15125=5*5*5*11*11 is 5-almost prime.
		

Crossrefs

Programs

  • Magma
    [n: n in PrimesUpTo(2*10^6) | forall{k: k in [1..4] | &+[f[j, 2]: j in [1..#f]] eq k+1 where f is Factorization(n+k)}]; // Vincenzo Librandi, Sep 24 2012
    
  • Mathematica
    f[n_] := Plus @@ Last /@ FactorInteger@n; t = {}; Do[p = Prime[n]; If[Array[ f[p + # ] &, 4] == {2, 3, 4, 5}, AppendTo[t, p]], {n, 126483}]; t (* Robert G. Wilson v *)
    aprQ[p_]:=Total[FactorInteger[#][[All,2]]]&/@Range[p+1,p+4]=={2,3,4,5}; Select[ Prime[ Range[120000]],aprQ] (* Harvey P. Dale, Dec 17 2022 *)
  • PARI
    list(lim)=my(v=List(), L=(lim+2)\3, t); forprime(p=3, L\3, forprime(q=3, min(L\p, p), t=3*p*q-2; if(t%12==1 && isprime(t) && isprime((t+1)/2) && bigomega(t+3)==4 && bigomega(t+4)==5, listput(v, t)))); Set(v) \\ Charles R Greathouse IV, Feb 05 2017

Extensions

More terms from Robert G. Wilson v, Jan 05 2006