A113047 a(n) = C(3n,n)/(2n+1) mod 3.
1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 0
Links
- Antti Karttunen, Table of n, a(n) for n = 0..29524
- Kevin Ryde, Proof of characteristic function of the ternary repunits.
Programs
-
Mathematica
Table[Mod[Binomial[3 n, n]/(2 n + 1), 3], {n, 0, 72}] (* Michael De Vlieger, Mar 24 2015 *)
-
PARI
A113047(n) = ((binomial(3*n,n)/(n+n+1))%3); \\ Antti Karttunen, Aug 28 2017
-
PARI
a(n) = while(n, my(r);[n,r]=divrem(n,3); if(r!=1,return(0))); 1; \\ Kevin Ryde, Jun 23 2021
Formula
G.f.: A(x) satisfies A(x)=1+x*A(x^3). - Vladimir Kruchinin, Mar 24 2015
a(n) = A001764(n) mod 3. - Michel Marcus, Mar 24 2015
a(n) = floor(log_3(2*n + 1)) - floor(log_3(2*n - 1)), for n>=1. - Ridouane Oudra, Aug 24 2021
Extensions
More terms from Antti Karttunen, Aug 28 2017
Comments