cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A113047 a(n) = C(3n,n)/(2n+1) mod 3.

Original entry on oeis.org

1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 0

Views

Author

Paul Barry, Oct 11 2005

Keywords

Comments

a(n) differs from 0 only when n=(3^j-1)/2, j>=0. [Conjecture confirmed by Kevin Ryde, Jun 23 2021; see links]
Characteristic function of the ternary repunits, a(n) = 1 iff n is a ternary repunit (A003462). - Kevin Ryde, Jun 23 2021

Crossrefs

Cf. A001764, A003462 (indices of 1's), A010872, A039969.

Programs

  • Mathematica
    Table[Mod[Binomial[3 n, n]/(2 n + 1), 3], {n, 0, 72}] (* Michael De Vlieger, Mar 24 2015 *)
  • PARI
    A113047(n) = ((binomial(3*n,n)/(n+n+1))%3); \\ Antti Karttunen, Aug 28 2017
    
  • PARI
    a(n) = while(n, my(r);[n,r]=divrem(n,3); if(r!=1,return(0))); 1; \\ Kevin Ryde, Jun 23 2021

Formula

G.f.: A(x) satisfies A(x)=1+x*A(x^3). - Vladimir Kruchinin, Mar 24 2015
a(n) = A001764(n) mod 3. - Michel Marcus, Mar 24 2015
a(n) = floor(log_3(2*n + 1)) - floor(log_3(2*n - 1)), for n>=1. - Ridouane Oudra, Aug 24 2021

Extensions

More terms from Antti Karttunen, Aug 28 2017