cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A113060 a(n) = n!*Sum_{k=0..n} bell(k+1)/k!, n=0,1..., where bell(n) are the Bell numbers, cf. A000110.

Original entry on oeis.org

1, 3, 11, 48, 244, 1423, 9415, 70045, 581507, 5349538, 54173950, 600127047, 7229169001, 94170096335, 1319764307235, 19806944750672, 316993980880556, 5389579751775611, 97018268274166055
Offset: 0

Views

Author

Karol A. Penson, Oct 13 2005

Keywords

Crossrefs

Cf. A113059.

Programs

  • Magma
    m:=25; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Exp(Exp(x)-1+x)/(1-x))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, May 23 2018
  • Mathematica
    With[{nmax = 50}, CoefficientList[Series[Exp[Exp[x] - 1 + x]/(1 - x), {x, 0, nmax}], x]*Range[0, nmax]!] (* G. C. Greubel, May 23 2018 *)
    Table[n!Sum[BellB[k+1]/k!,{k,0,n}],{n,0,20}] (* Harvey P. Dale, May 03 2020 *)
  • PARI
    x='x+O('x^30); Vec(serlaplace(exp(exp(x)-1+x)/(1-x) )) \\ G. C. Greubel, May 23 2018
    

Formula

a(n) = (-1)^n*n!*Sum_{p >=1} LaguerreL(n, -n-1, p)/(p-1)!/exp(1), n>=0.
E.g.f.: exp(exp(x)-1+x)/(1-x).
Representation as the n-th moment of a positive weight function on a positive half-axis: The weight function is a piecewise continuous function which is a weighted infinite sum of shifted exponential distributions, in Maple notation: a(n)=int(x^n*sum(exp(p-x)*Heaviside(x-p)/(p-1)!, p=1..infinity))/(exp(1)), n=0, 1...
a(n) ~ exp(exp(1)) * n!. - Vaclav Kotesovec, Jun 26 2022