A113061 Sum of cube divisors of n.
1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 28, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 28, 1, 9, 1, 1, 1, 1, 1, 1, 1, 73, 1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 9, 28, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 9
Offset: 1
Links
- Antti Karttunen, Table of n, a(n) for n = 1..19683
- R. J. Mathar, Survey of Dirichlet series of multiplicative arithmetic functions, arXiv:1106.4038 [math.NT] (2011), Remark 15.
- Index entries for sequences related to sums of divisors
Programs
-
Maple
A113061 := proc(n) local a,pe,p,e; a := 1; for pe in ifactors(n)[2] do p := pe[1] ; e := pe[2] ; e := 3*(1+floor(e/3)) ; a := a*(p^e-1)/(p^3-1) ; end do: a ; end proc: seq(A113061(n),n=1..100) ; # R. J. Mathar, Oct 08 2017
-
Mathematica
a[n_] := Sum[If[IntegerQ[d^(1/3)], d, 0], {d, Divisors[n]}]; Array[a, 100] (* Jean-François Alcover, Nov 25 2017 *) f[p_, e_] := (p^(3*(1 + Floor[e/3])) - 1)/(p^3 - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, May 01 2020 *)
-
PARI
A113061(n) = sumdiv(n,d,ispower(d,3)*d); \\ Antti Karttunen, Oct 08 2017
-
Scheme
;; With memoization-macro definec, after the multiplicative formula of R. J. Mathar: (definec (A113061 n) (if (= 1 n) n (let ((p (A020639 n)) (e (A067029 n))) (* (/ (+ -1 (expt p (* 3 (+ 1 (A002264 e))))) (+ -1 (expt p 3))) (A113061 (A028234 n)))))) ;; Antti Karttunen, Oct 08 2017
Formula
G.f.: Sum_{k>=1} k^3*x^(k^3)/(1 - x^(k^3)). - Ilya Gutkovskiy, Dec 24 2016
a(n) = Sum_{d|n} A010057(d)*d. - Antti Karttunen, Oct 08 2017
Sum_{k=1..n} a(k) ~ zeta(4/3)*n^(4/3)/4 - n/2. - Vaclav Kotesovec, Dec 01 2020
Comments