cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A113061 Sum of cube divisors of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 28, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 28, 1, 9, 1, 1, 1, 1, 1, 1, 1, 73, 1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 9, 28, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 9
Offset: 1

Views

Author

Paul Barry, Oct 13 2005

Keywords

Comments

Multiplicative with a(p^e) = (p^(3*(1+floor(e/3)))-1)/(p^3-1). The Dirichlet generating function is zeta(s)*zeta(3s-3). The sequence is the inverse Mobius transform of n*A010057(n). - R. J. Mathar, Feb 18 2011

Crossrefs

Programs

  • Maple
    A113061 := proc(n)
        local a,pe,p,e;
        a := 1;
        for pe in ifactors(n)[2] do
            p := pe[1] ;
            e := pe[2] ;
            e := 3*(1+floor(e/3)) ;
            a := a*(p^e-1)/(p^3-1) ;
        end do:
        a ;
    end proc:
    seq(A113061(n),n=1..100) ; # R. J. Mathar, Oct 08 2017
  • Mathematica
    a[n_] := Sum[If[IntegerQ[d^(1/3)], d, 0], {d, Divisors[n]}];
    Array[a, 100] (* Jean-François Alcover, Nov 25 2017 *)
    f[p_, e_] := (p^(3*(1 + Floor[e/3])) - 1)/(p^3 - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, May 01 2020 *)
  • PARI
    A113061(n) = sumdiv(n,d,ispower(d,3)*d); \\ Antti Karttunen, Oct 08 2017
    
  • Scheme
    ;; With memoization-macro definec, after the multiplicative formula of R. J. Mathar:
    (definec (A113061 n) (if (= 1 n) n (let ((p (A020639 n)) (e (A067029 n))) (* (/ (+ -1 (expt p (* 3 (+ 1 (A002264 e))))) (+ -1 (expt p 3))) (A113061 (A028234 n)))))) ;; Antti Karttunen, Oct 08 2017

Formula

G.f.: Sum_{k>=1} k^3*x^(k^3)/(1 - x^(k^3)). - Ilya Gutkovskiy, Dec 24 2016
a(n) = Sum_{d|n} A010057(d)*d. - Antti Karttunen, Oct 08 2017
Sum_{k=1..n} a(k) ~ zeta(4/3)*n^(4/3)/4 - n/2. - Vaclav Kotesovec, Dec 01 2020