cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A035316 Sum of the square divisors of n.

Original entry on oeis.org

1, 1, 1, 5, 1, 1, 1, 5, 10, 1, 1, 5, 1, 1, 1, 21, 1, 10, 1, 5, 1, 1, 1, 5, 26, 1, 10, 5, 1, 1, 1, 21, 1, 1, 1, 50, 1, 1, 1, 5, 1, 1, 1, 5, 10, 1, 1, 21, 50, 26, 1, 5, 1, 10, 1, 5, 1, 1, 1, 5, 1, 1, 10, 85, 1, 1, 1, 5, 1, 1, 1, 50, 1, 1, 26, 5, 1, 1, 1, 21, 91, 1, 1, 5, 1, 1, 1, 5, 1, 10, 1, 5, 1
Offset: 1

Views

Author

Keywords

Comments

The Dirichlet generating function is zeta(s)*zeta(2s-2). The sequence is the Dirichlet convolution of A000012 with the sequence defined by n*A010052(n). - R. J. Mathar, Feb 18 2011
Inverse Möbius transform of n * c(n), where c(n) is the characteristic function of squares (A010052). - Wesley Ivan Hurt, Jun 20 2024

Crossrefs

Cf. A001157, A010052, A027748, A124010, A113061 (sum cube divs).
Sum of the k-th powers of the square divisors of n for k=0..10: A046951 (k=0), this sequence (k=1), A351307 (k=2), A351308 (k=3), A351309 (k=4), A351310 (k=5), A351311 (k=6), A351313 (k=7), A351314 (k=8), A351315 (k=9), A351315 (k=10).

Programs

  • Haskell
    a035316 n = product $
       zipWith (\p e -> (p ^ (e + 2 - mod e 2) - 1) `div` (p ^ 2 - 1))
               (a027748_row n) (a124010_row n)
    -- Reinhard Zumkeller, Jul 28 2014
  • Maple
    A035316 := proc(n)
        local a,pe,p,e;
        a := 1;
        for pe in ifactors(n)[2] do
            p := pe[1] ;
            e := pe[2] ;
            if type(e,'even') then
                e := e+2 ;
            else
                e := e+1 ;
            end if;
            a := a*(p^e-1)/(p^2-1) ;
        end do:
        a ;
    end proc:
    seq(A035316(n),n=1..100) ; # R. J. Mathar, Oct 10 2017
  • Mathematica
    Table[ Plus @@ Select[ Divisors@ n, IntegerQ@ Sqrt@ # &], {n, 93}] (* Robert G. Wilson v, Feb 19 2011 *)
    f[p_, e_] := (p^(2*(1 + Floor[e/2])) - 1)/(p^2 - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, May 01 2020 *)
  • PARI
    vector(93, n, sumdiv(n, d, issquare(d)*d))
    
  • PARI
    a(n)=my(f=factor(n));prod(i=1,#f[,1],(f[i,1]^(f[i,2]+2-f[i,2]%2)-1)/(f[i,1]^2-1)) \\ Charles R Greathouse IV, May 20 2013
    

Formula

Multiplicative with a(p^e)=(p^(e+2)-1)/(p^2-1) for even e and a(p^e)=(p^(e+1)-1)/(p^2-1) for odd e. - Vladeta Jovovic, Dec 05 2001
G.f.: Sum_{k>0} k^2*x^(k^2)/(1-x^(k^2)). - Vladeta Jovovic, Dec 13 2002
a(n^2) = A001157(n). - Michel Marcus, Jan 14 2014
L.g.f.: -log(Product_{k>=1} (1 - x^(k^2))) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, May 06 2017
Sum_{k=1..n} a(k) ~ Zeta(3/2)*n^(3/2)/3 - n/2. - Vaclav Kotesovec, Feb 04 2019
a(n) = Sum_{k=1..n} k * (floor(sqrt(k)) - floor(sqrt(k-1))) * (1 - ceiling(n/k) + floor(n/k)). - Wesley Ivan Hurt, Jun 13 2021
a(n) = Sum_{d|n} d * c(d), where c = A010052. - Wesley Ivan Hurt, Jun 20 2024
a(n) = Sum_{d|n} lambda(d)*d*sigma(n/d), where lambda = A008836. - Ridouane Oudra, Jul 18 2025

A380396 a(n) is the sum of the unitary divisors of n that are cubes.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 28, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 28, 1, 9, 1, 1, 1, 1, 1, 1, 1, 65, 1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Jan 23 2025

Keywords

Comments

The number of unitary divisors of n that are cubes is A380395(n).

Examples

			a(8) = 9 since 8 has 2 unitary divisors that are cubes, 1 = 1^3 and 8 = 2^3, and 1 + 8 = 9.
a(216) = 252 since 216 has 4 unitary divisors that are cubes, 1 = 1^3, 8 = 2^3, 27 = 3^3 and 216 = 6^3, and 1 + 8 + 27 + 216 = 252.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[Divisible[e, 3], p^e + 1, 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 2]%3, 1, f[i, 1]^f[i, 2] + 1));}

Formula

a(n) = Sum_{d|n, gcd(d, n/d) = 1} d * [d is cube], where [] is the Iverson bracket.
a(n) >= 1, with equality if and only if n is not in A366761.
a(n) <= A113061(n), with equality if and only if n is biquadratefree (A046100).
Multiplicative with a(p^e) = p^e + 1 if e is divisible by 3, and 1 otherwise.
Sum_{k=1..n} a(k) ~ c * n^(4/3) / 4, where c = zeta(4/3)/zeta(7/3) = 2.54455250463133711749... .
Dirichlet g.f.: zeta(s) * zeta(3*s-3) / zeta(4*s-3).
In general, the average order of the sum of the unitary divisors that are m-powers is c * n^(1+1/m) / (m+1), where c = zeta(1+1/m)/zeta(2+1/m), and its Dirichlet g.f. is zeta(s) * zeta(m*s-m) / zeta((m+1)*s-m), both for m >= 2.

A327626 Expansion of Sum_{k>=1} x^(k^3) / (1 - x^(k^3))^2.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 9, 9, 10, 11, 12, 13, 14, 15, 18, 17, 18, 19, 20, 21, 22, 23, 27, 25, 26, 28, 28, 29, 30, 31, 36, 33, 34, 35, 36, 37, 38, 39, 45, 41, 42, 43, 44, 45, 46, 47, 54, 49, 50, 51, 52, 53, 56, 55, 63, 57, 58, 59, 60, 61, 62, 63, 73, 65, 66, 67, 68, 69, 70, 71, 81, 73, 74, 75
Offset: 1

Views

Author

Ilya Gutkovskiy, Sep 19 2019

Keywords

Comments

Sum of divisors d of n such that n/d is a cube.
Inverse Moebius transform of A078429.

Crossrefs

Programs

  • Mathematica
    nmax = 75; CoefficientList[Series[Sum[x^(k^3)/(1 - x^(k^3))^2, {k, 1, Floor[nmax^(1/3)] + 1}], {x, 0, nmax}], x] // Rest
    a[n_] := DivisorSum[n, # &, IntegerQ[(n/#)^(1/3)] &]; Table[a[n], {n, 1, 75}]
    f[p_, e_] := (p^(e+3) - p^Mod[e, 3])/(p^3-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, May 25 2025 *)
  • PARI
    A327626(n) = sumdiv(n,d,ispower(n/d,3)*d); \\ Antti Karttunen, Sep 19 2019

Formula

a(n) = Sum_{d|n} A078429(d).
a(n) = Sum_{d|n} A010057(n/d) * d. Dirichlet convolution of A000027 and A010057.
D.g.f.: zeta(s-1)*zeta(3s). - R. J. Mathar, Jun 05 2020
Sum_{k=1..n} a(k) ~ Pi^6 * n^2 / 1890. - Vaclav Kotesovec, May 20 2021
Multiplicative with a(p^e) = (p^(e+3) - p^(e mod 3))/(p^3-1). - Amiram Eldar, May 25 2025

A333843 Expansion of g.f.: Sum_{k>=1} k * x^(k^3) / (1 - x^(k^3)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 4, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 4, 1, 3, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 4, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 4
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 07 2020

Keywords

Comments

Sum of cube roots of cube divisors of n.

Crossrefs

Programs

  • Mathematica
    nmax = 108; CoefficientList[Series[Sum[k x^(k^3)/(1 - x^(k^3)), {k, 1, Floor[nmax^(1/3)] + 1}], {x, 0, nmax}], x] // Rest
    Table[DivisorSum[n, #^(1/3) &, IntegerQ[#^(1/3)] &], {n, 108}]
    f[p_, e_] := (p^(Floor[e/3] + 1) - 1)/(p - 1); a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Dec 01 2020 *)
  • PARI
    a(n) = {my(f = factor(n)); prod(i=1, #f~, (f[i,1]^(f[i,2]\3 + 1) - 1)/(f[i,1] - 1));} \\ Amiram Eldar, Sep 05 2023

Formula

Dirichlet g.f.: zeta(s) * zeta(3*s-1).
If n = Product (p_j^k_j) then a(n) = Product ((p_j^(floor(k_j/3) + 1) - 1)/(p_j - 1)).
Sum_{k=1..n} a(k) ~ Pi^2*n/6 + zeta(2/3)*n^(2/3)/2. - Vaclav Kotesovec, Dec 01 2020
a(n) = A000203(A053150(n)) (the sum of divisors of the cube root of largest cube dividing n). - Amiram Eldar, Sep 05 2023

A385006 The sum of the biquadratefree divisors of n.

Original entry on oeis.org

1, 3, 4, 7, 6, 12, 8, 15, 13, 18, 12, 28, 14, 24, 24, 15, 18, 39, 20, 42, 32, 36, 24, 60, 31, 42, 40, 56, 30, 72, 32, 15, 48, 54, 48, 91, 38, 60, 56, 90, 42, 96, 44, 84, 78, 72, 48, 60, 57, 93, 72, 98, 54, 120, 72, 120, 80, 90, 60, 168, 62, 96, 104, 15, 84, 144
Offset: 1

Views

Author

Amiram Eldar, Jun 15 2025

Keywords

Comments

First differs from A365682 and A366992 at n = 32.
The number of these divisors is A252505(n), and the largest of them is A058035(n).

Crossrefs

The sum of divisors d of n such that d is: A000593 (odd), A033634 (exponentially odd), A035316 (square), A038712 (power of 2), A048250 (squarefree), A072079 (3-smooth), A073185 (cubefree), A113061 (cube), A162296 (nonsquarefree), A183097 (powerful), A186099 (5-rough), A353900 (exponentially 2^n), A385005 (cubefull), this sequence (biquadratefree).

Programs

  • Mathematica
    f[p_, e_] := (p^Min[e+1, 4] - 1)/(p - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n), p, e); prod(i = 1, #f~, p = f[i,1]; e = f[i,2]; (p^min(e+1, 4) - 1)/(p - 1));}

Formula

Multiplicative with a(p^e) = (p^min(e+1, 4) - 1)/(p - 1).
In general, the sum of the k-free (numbers that are not divisible by a k-th power larger than 1) divisors of n is multiplicative with a(p^e) = (p^min(e+1, k) - 1)/(p - 1).
Dirichlet g.f.: zeta(s) * zeta(s-1) /zeta(4*s-4).
In general, the sum of the k-free divisors of n has Dirichlet g.f.: zeta(s)*zeta(s-1)/zeta(k*s-k).
Sum_{k=1..n} a(k) ~ (15/(2*Pi^2)) * n^2.
In general, the sum of the k-free divisors of n has an average order (Pi^2/(12*zeta(k))) * n^2.

A300909 Sum of 4th powers dividing n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 17, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 17, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 17, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 17, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 17, 82, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 17, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 17
Offset: 1

Views

Author

Ilya Gutkovskiy, Mar 15 2018

Keywords

Comments

Multiplicative with a(p^e) = (p^(4*(1+floor(e/4)))-1)/(p^4-1). - Robert Israel, Mar 15 2018

Examples

			a(16) = 17 because 16 has 5 divisors {1, 2, 4, 8, 16} among which 2 divisors {1, 16} are 4th powers and 1 + 16 = 17.
L.g.f.: L(x) = x + x^2/2 + x^3/3 + x^4/4 + x^5/5 + x^6/6 + x^7/7 + x^8/8 + x^9/9 + x^10/10 + x^11/11 + x^12/12 + x^13/13 + x^14/14 + x^15/15 + 17*x^16/16 + x^17/17 + ...
exp(L(x)) = 1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9 + x^10 + x^11 + x^12 + x^13 + x^14 + x^15 + 2*x^16 + 2*x^17 + ... + A046042(n)*x^n + ...
		

Crossrefs

Cf. A000583, A001159, A035316, A046042, A046100 (positions of ones), A063775, A113061.

Programs

  • Maple
    N:= 1000: # for a(1)..a(N)
    V:= Vector(N,1):
    for m from 2 to floor(N^(1/4)) do
      R:= [seq(i,i=m^4 .. N, m^4)];
      V[R]:= map(`+`,V[R],m^4)
    od:
    convert(V,list); # Robert Israel, Mar 15 2018
  • Mathematica
    Table[DivisorSum[n, # &, IntegerQ[#^(1/4)] &], {n, 112}]
    nmax = 112; Rest[CoefficientList[Series[Sum[k^4 x^k^4/(1 - x^k^4), {k, 1, 10}], {x, 0, nmax}], x]]
    nmax = 112; Rest[CoefficientList[Series[-Log[Product[(1 - x^k^4), {k, 1, 10}]], {x, 0, nmax}], x] Range[0, nmax]]
    f[p_, e_] := (p^(4*(1 + Floor[e/4])) - 1)/(p^4 - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, May 01 2020 *)
  • PARI
    a(n) = sumdiv(n, d, d*ispower(d, 4)); \\ Michel Marcus, Mar 15 2018

Formula

G.f.: Sum_{k>=1} k^4*x^(k^4)/(1 - x^(k^4)).
L.g.f.: -log(Product_{k>=1} (1 - x^(k^4))) = Sum_{n>=1} a(n)*x^n/n.
D.g.f.: zeta(s)*zeta(4s-4). - Robert Israel, Mar 15 2018
Sum_{k=1..n} a(k) ~ zeta(5/4)*n^(5/4)/5 - n/2. - Vaclav Kotesovec, Dec 01 2020

A309126 a(n) = n + 2^3 * floor(n/2^3) + 3^3 * floor(n/3^3) + 4^3 * floor(n/4^3) + ...

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23, 32, 33, 34, 35, 36, 37, 38, 39, 48, 49, 50, 78, 79, 80, 81, 82, 91, 92, 93, 94, 95, 96, 97, 98, 107, 108, 109, 110, 111, 112, 113, 114, 123, 124, 125, 126, 127, 128, 156, 157, 166, 167, 168, 169, 170, 171, 172, 173, 246, 247, 248, 249, 250, 251, 252
Offset: 1

Views

Author

Ilya Gutkovskiy, Jul 13 2019

Keywords

Comments

Partial sums of A113061.

Crossrefs

Programs

  • Mathematica
    Table[Sum[k^3 Floor[n/k^3], {k, 1, n}], {n, 1, 70}]
    nmax = 70; CoefficientList[Series[1/(1 - x) Sum[k^3 x^(k^3)/(1 - x^(k^3)), {k, 1, Floor[nmax^(1/3)] + 1}], {x, 0, nmax}], x] // Rest
  • PARI
    a(n) = sum(k=1, n, k^3*(n\k^3)); \\ Seiichi Manyama, Aug 30 2021

Formula

G.f.: (1/(1 - x)) * Sum_{k>=1} k^3 * x^(k^3)/(1 - x^(k^3)).
a(n) ~ zeta(4/3)*n^(4/3)/4 - n/2. - Vaclav Kotesovec, Aug 30 2021

A385005 The sum of the cubefull divisors of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 25, 1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 28, 1, 1, 1, 1, 57, 1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 25, 1, 1, 1, 1, 1, 28, 1, 9, 1, 1, 1, 1, 1, 1, 1, 121, 1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 25, 109, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Jun 15 2025

Keywords

Comments

The sum of the terms in A036966 that divide n.
The number of these divisors is A190867(n), and the largest of them is A360540(n).

Crossrefs

The sum of divisors d of n such that d is: A000593 (odd), A033634 (exponentially odd), A035316 (square), A038712 (power of 2), A048250 (squarefree), A072079 (3-smooth), A073185 (cubefree), A113061 (cube), A162296 (nonsquarefree), A183097 (powerful), A186099 (5-rough), A353900 (exponentially 2^n), this sequence (cubefull), A385006 (biquadratefree).

Programs

  • Mathematica
    f[p_, e_] := (p^(e+1)-1)/(p-1) - p - If[e == 1, 0, p^2]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n), p, e); prod(i = 1, #f~, p = f[i,1]; e = f[i,2]; (p^(e+1)-1)/(p-1) - p - if(e == 1, 0, p^2));}

Formula

Multiplicative with a(p^e) = 1 if e <= 2, and a(p^e) = ((p^(e+1)-1) / (p-1)) - p - p^2 if e >= 3.
Dirichlet g.f.: zeta(s-1) * zeta(s) * Product_{p prime} (1 - p^(s-1) + 1/p^(3*s-3)).

A304906 L.g.f.: log(Product_{k>=1} (1 + x^(k^3))) = Sum_{n>=1} a(n)*x^n/n.

Original entry on oeis.org

1, -1, 1, -1, 1, -1, 1, 7, 1, -1, 1, -1, 1, -1, 1, -9, 1, -1, 1, -1, 1, -1, 1, 7, 1, -1, 28, -1, 1, -1, 1, -9, 1, -1, 1, -1, 1, -1, 1, 7, 1, -1, 1, -1, 1, -1, 1, -9, 1, -1, 1, -1, 1, -28, 1, 7, 1, -1, 1, -1, 1, -1, 1, 55, 1, -1, 1, -1, 1, -1, 1, 7, 1, -1, 1, -1, 1, -1, 1, -9, 28, -1
Offset: 1

Views

Author

Ilya Gutkovskiy, May 20 2018

Keywords

Examples

			L.g.f.: L(x) = x - x^2/2 + x^3/3 - x^4/4 + x^5/5 - x^6/6 + x^7/7 + 7*x^8/8 + x^9/9 - x^10/10 + x^11/11 - x^12/12 + ...
exp(L(x)) = 1 + x + x^8 + x^9 + x^27 + x^28 + x^35 + x^36 + x^64 + x^65 + x^72 + x^73 + ... + A279329(n)*x^n + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 82; Rest[CoefficientList[Series[Log[Product[1 + x^k^3, {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]]
    nmax = 82; Rest[CoefficientList[Series[Sum[k^3 x^k^3/(1 + x^k^3), {k, 1, Floor[nmax^(1/3) + 1]}], {x, 0, nmax}], x]]
    Table[DivisorSum[n, (-1)^(n/# + 1) # &, IntegerQ[#^(1/3)] &], {n, 82}]
    f[p_, e_] := (-1)^(p+1) * (p^(3*Floor[(e+3)/3])-1)/(p^3-1) + If[p == 2 && Divisible[e, 3], 2^(e + 1), 0]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 03 2023 *)
  • PARI
    seq(n)={Vec(deriv(log(prod(k=1, sqrtnint(n, 3), 1 + x^(k^3) + O(x*x^n)))))} \\ Andrew Howroyd, Jul 20 2018
    
  • PARI
    a(n)={sumdiv(n, d, if(n%d^3, 0, (-1)^(n/d^3 + 1) * d^3))} \\ Andrew Howroyd, Jul 20 2018

Formula

G.f.: Sum_{k>=1} k^3*x^(k^3)/(1 + x^(k^3)).
a(n) = Sum_{d|n} (-1)^(n/d+1)*A010057(d)*d.
a(n) = 1 if n is an odd cubefree.
a(n) = -1 if n is an even cubefree.
Multiplicative with a(p^e) = (-1)^(p+1) * (p^(3*floor((e+3)/3))-1)/(p^3-1) + if(p = 2 and e == 0 (mod 3), 2^(e + 1) otherwise 0). - Amiram Eldar, Oct 03 2023

Extensions

Keyword:mult added by Andrew Howroyd, Jul 20 2018

A347398 Expansion of g.f. Sum_{k>=1} k^k * x^(k^k)/(1 - x^(k^k)).

Original entry on oeis.org

1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 28, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 28, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 28, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 32, 1, 1, 1, 5
Offset: 1

Views

Author

Seiichi Manyama, Aug 30 2021

Keywords

Examples

			1^1 | 108, 2^2 | 108 and 3^3 | 108. So a(108) = 1^1 + 2^2 + 3^3 = 32.
		

Crossrefs

Programs

  • PARI
    a(n) = sum(k=1, n, (n%k^k==0)*k^k);

Formula

a(n) = A347397(n) - A347397(n-1) for n > 1.
a(n) = Sum_{k=1..n, k^k | n} k^k.
Showing 1-10 of 13 results. Next