cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A333844 G.f.: Sum_{k>=1} k * x^(k^4) / (1 - x^(k^4)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 07 2020

Keywords

Comments

Sum of 4th roots of 4th powers dividing n.

Crossrefs

Programs

  • Mathematica
    nmax = 112; CoefficientList[Series[Sum[k x^(k^4)/(1 - x^(k^4)), {k, 1, Floor[nmax^(1/4)] + 1}], {x, 0, nmax}], x] // Rest
    Table[DivisorSum[n, #^(1/4) &, IntegerQ[#^(1/4)] &], {n, 112}]
    f[p_, e_] := (p^(Floor[e/4] + 1) - 1)/(p - 1); a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Dec 01 2020 *)

Formula

Dirichlet g.f.: zeta(s) * zeta(4*s-1).
If n = Product (p_j^k_j) then a(n) = Product ((p_j^(floor(k_j/4) + 1) - 1)/(p_j - 1)).
Sum_{k=1..n} a(k) ~ zeta(3)*n + zeta(1/2)*sqrt(n)/2. - Vaclav Kotesovec, Dec 01 2020

A345321 Sum of the divisors of n whose cube does not divide n.

Original entry on oeis.org

0, 2, 3, 6, 5, 11, 7, 12, 12, 17, 11, 27, 13, 23, 23, 28, 17, 38, 19, 41, 31, 35, 23, 57, 30, 41, 36, 55, 29, 71, 31, 60, 47, 53, 47, 90, 37, 59, 55, 87, 41, 95, 43, 83, 77, 71, 47, 121, 56, 92, 71, 97, 53, 116, 71, 117, 79, 89, 59, 167, 61, 95, 103, 120, 83, 143, 67, 125, 95
Offset: 1

Views

Author

Wesley Ivan Hurt, Jun 13 2021

Keywords

Examples

			a(16) = 28; The divisors of 16 whose cube does not divide 16 are: 4, 8 and 16. The sum of these divisors is then 4 + 8 + 16 = 28.
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[k (Ceiling[n/k^3] - Floor[n/k^3]) (1 - Ceiling[n/k] + Floor[n/k]), {k, n}], {n, 80}]
    Table[Total[Select[Divisors[n],Mod[n,#^3]!=0&]],{n,100}] (* Harvey P. Dale, May 01 2022 *)
  • PARI
    a(n) = sumdiv(n, d, if (n % d^3, d)); \\ Michel Marcus, Jun 13 2021
    (Python 3.8+)
    from math import prod
    from sympy import factorint
    def A345321(n):
        f = factorint(n).items()
        return prod((p**(q+1)-1)//(p-1) for p, q in f) - prod((p**(q//3+1)-1)//(p-1) for p, q in f) # Chai Wah Wu, Jun 14 2021

Formula

a(n) = Sum_{k=1..n} k * (ceiling(n/k^3) - floor(n/k^3)) * (1 - ceiling(n/k) + floor(n/k)).
a(n) = A000203(n) - A333843(n). - Rémy Sigrist, Jun 14 2021

A361793 Sum of the squares d^2 of the divisors d satisfying d^3|n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 10, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 10, 1, 5, 1, 1, 1, 1, 1, 1, 1, 21, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 5
Offset: 1

Views

Author

R. J. Mathar, Mar 24 2023

Keywords

Comments

The Mobius transform is 1, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, ... = n^(2/3)*A010057(n).

Crossrefs

Programs

  • Maple
    gsigma := proc(n,z,k)
        local a,d ;
        a := 0 ;
        for d in numtheory[divisors](n) do
            if modp(n,d^k) = 0 then
                a := a+d^z ;
            end if ;
        end do:
        a ;
    end proc:
    seq( gsigma(n,2,3),n=1..80) ;
  • Mathematica
    f[p_, e_] := (p^(2*(Floor[e/3] + 1)) - 1)/(p^2 - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Mar 24 2023 *)
  • PARI
    a(n) = sumdiv(n, d, if (ispower(d, 3), sqrtnint(d, 3)^2)); \\ Michel Marcus, Mar 24 2023
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1/((1-X)*(1-p^2*X^3))))[n], ", ")) \\ Vaclav Kotesovec, Jun 26 2024
    
  • Python
    from math import prod
    from sympy import factorint
    def A361793(n): return prod((p**(e//3+1<<1)-1)//(p**2-1) for p, e in factorint(n).items()) # Chai Wah Wu, Mar 24 2023

Formula

a(n) = Sum_{d^3|n} d^2.
Multiplicative with a(p^e) = (p^(2*(floor(e/3) + 1)) - 1)/(p^2 - 1). - Amiram Eldar, Mar 24 2023
G.f.: Sum_{k>=1} k^2 * x^(k^3) / (1 - x^(k^3)). - Ilya Gutkovskiy, Jun 05 2024
From Vaclav Kotesovec, Jun 26 2024: (Start)
Dirichlet g.f.: zeta(s)*zeta(3*s-2).
Sum_{k=1..n} a(k) ~ n*(log(n) + 4*gamma - 1)/3, where gamma is the Euler-Mascheroni constant A001620. (End)

A361794 Sum of the cubes d^3 of the divisors d satisfying d^2|n.

Original entry on oeis.org

1, 1, 1, 9, 1, 1, 1, 9, 28, 1, 1, 9, 1, 1, 1, 73, 1, 28, 1, 9, 1, 1, 1, 9, 126, 1, 28, 9, 1, 1, 1, 73, 1, 1, 1, 252, 1, 1, 1, 9, 1, 1, 1, 9, 28, 1, 1, 73, 344, 126, 1, 9, 1, 28, 1, 9, 1, 1, 1, 9, 1, 1, 28, 585, 1, 1, 1, 9, 1, 1, 1, 252, 1, 1, 126, 9, 1, 1, 1, 73
Offset: 1

Views

Author

R. J. Mathar, Mar 24 2023

Keywords

Comments

The Mobius transform is 1, 0, 0, 8, 0, 0, 0, 0, 27, 0, 0, ... = n^(3/2)*A010052(n).

Crossrefs

Programs

  • Maple
    gsigma := proc(n,z,k)
        local a,d ;
        a := 0 ;
        for d in numtheory[divisors](n) do
            if modp(n,d^k) = 0 then
                a := a+d^z ;
            end if ;
        end do:
        a ;
    end proc:
    seq( gsigma(n,3,2),n=1..80) ;
  • Mathematica
    f[p_, e_] := (p^(3*(Floor[e/2] + 1)) - 1)/(p^3 - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Mar 24 2023 *)
  • PARI
    a(n) = sumdiv(n, d, if (issquare(d), sqrtint(d)^3)); \\ Michel Marcus, Mar 24 2023
    
  • Python
    from math import prod
    from sympy import factorint
    def A361794(n): return prod((p**(3*(e>>1)+3)-1)//(p**3-1) for p, e in factorint(n).items()) # Chai Wah Wu, Mar 24 2023

Formula

a(n) = Sum_{d^2|n} d^3.
Multiplicative with a(p^e) = (p^(3*(floor(e/2) + 1)) - 1)/(p^3 - 1). - Amiram Eldar, Mar 24 2023
G.f.: Sum_{k>=1} k^3 * x^(k^2) / (1 - x^(k^2)). - Ilya Gutkovskiy, Jun 05 2024

A366123 The number of prime factors of the cube root of the largest cube dividing n, counted with multiplicity.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Amiram Eldar, Sep 30 2023

Keywords

Comments

First differs from A295659 at n = 64.
The number of distinct prime factors of the cube root of the largest cube dividing n is A295659(n).

Crossrefs

Cf. A061704 (number of divisors), A333843 (sum of divisors).

Programs

  • Mathematica
    f[p_, e_] := Floor[e/3]; a[1] = 0; a[n_] := Plus @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecsum(apply(x -> x\3, factor(n)[, 2]));

Formula

a(n) = A001222(A053150(n)).
a(n) = A001222(A008834(n))/3.
Additive with a(p^e) = floor(e/3) = A002264(e).
a(n) >= 0, with equality if and only if n is cubefree (A004709).
a(n) <= A001222(n)/3, with equality if and only if n is a positive cube (A000578 \ {0}).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{p prime} 1/(p^3-1) = 0.194118... (A286229).
Showing 1-5 of 5 results.