A333843 Expansion of g.f.: Sum_{k>=1} k * x^(k^3) / (1 - x^(k^3)).
1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 4, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 4, 1, 3, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 4, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 4
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Atul Dixit, Bibekananda Maji, and Akshaa Vatwani, Voronoi summation formula for the generalized divisor function sigma_z^k(n), arXiv:2303.09937 [math.NT], 2023, sigma(z=3,k=3,n).
Programs
-
Mathematica
nmax = 108; CoefficientList[Series[Sum[k x^(k^3)/(1 - x^(k^3)), {k, 1, Floor[nmax^(1/3)] + 1}], {x, 0, nmax}], x] // Rest Table[DivisorSum[n, #^(1/3) &, IntegerQ[#^(1/3)] &], {n, 108}] f[p_, e_] := (p^(Floor[e/3] + 1) - 1)/(p - 1); a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Dec 01 2020 *)
-
PARI
a(n) = {my(f = factor(n)); prod(i=1, #f~, (f[i,1]^(f[i,2]\3 + 1) - 1)/(f[i,1] - 1));} \\ Amiram Eldar, Sep 05 2023
Formula
Dirichlet g.f.: zeta(s) * zeta(3*s-1).
If n = Product (p_j^k_j) then a(n) = Product ((p_j^(floor(k_j/3) + 1) - 1)/(p_j - 1)).
Sum_{k=1..n} a(k) ~ Pi^2*n/6 + zeta(2/3)*n^(2/3)/2. - Vaclav Kotesovec, Dec 01 2020
a(n) = A000203(A053150(n)) (the sum of divisors of the cube root of largest cube dividing n). - Amiram Eldar, Sep 05 2023
Comments