cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A333843 Expansion of g.f.: Sum_{k>=1} k * x^(k^3) / (1 - x^(k^3)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 4, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 4, 1, 3, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 4, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 4
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 07 2020

Keywords

Comments

Sum of cube roots of cube divisors of n.

Crossrefs

Programs

  • Mathematica
    nmax = 108; CoefficientList[Series[Sum[k x^(k^3)/(1 - x^(k^3)), {k, 1, Floor[nmax^(1/3)] + 1}], {x, 0, nmax}], x] // Rest
    Table[DivisorSum[n, #^(1/3) &, IntegerQ[#^(1/3)] &], {n, 108}]
    f[p_, e_] := (p^(Floor[e/3] + 1) - 1)/(p - 1); a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Dec 01 2020 *)
  • PARI
    a(n) = {my(f = factor(n)); prod(i=1, #f~, (f[i,1]^(f[i,2]\3 + 1) - 1)/(f[i,1] - 1));} \\ Amiram Eldar, Sep 05 2023

Formula

Dirichlet g.f.: zeta(s) * zeta(3*s-1).
If n = Product (p_j^k_j) then a(n) = Product ((p_j^(floor(k_j/3) + 1) - 1)/(p_j - 1)).
Sum_{k=1..n} a(k) ~ Pi^2*n/6 + zeta(2/3)*n^(2/3)/2. - Vaclav Kotesovec, Dec 01 2020
a(n) = A000203(A053150(n)) (the sum of divisors of the cube root of largest cube dividing n). - Amiram Eldar, Sep 05 2023

A361794 Sum of the cubes d^3 of the divisors d satisfying d^2|n.

Original entry on oeis.org

1, 1, 1, 9, 1, 1, 1, 9, 28, 1, 1, 9, 1, 1, 1, 73, 1, 28, 1, 9, 1, 1, 1, 9, 126, 1, 28, 9, 1, 1, 1, 73, 1, 1, 1, 252, 1, 1, 1, 9, 1, 1, 1, 9, 28, 1, 1, 73, 344, 126, 1, 9, 1, 28, 1, 9, 1, 1, 1, 9, 1, 1, 28, 585, 1, 1, 1, 9, 1, 1, 1, 252, 1, 1, 126, 9, 1, 1, 1, 73
Offset: 1

Views

Author

R. J. Mathar, Mar 24 2023

Keywords

Comments

The Mobius transform is 1, 0, 0, 8, 0, 0, 0, 0, 27, 0, 0, ... = n^(3/2)*A010052(n).

Crossrefs

Programs

  • Maple
    gsigma := proc(n,z,k)
        local a,d ;
        a := 0 ;
        for d in numtheory[divisors](n) do
            if modp(n,d^k) = 0 then
                a := a+d^z ;
            end if ;
        end do:
        a ;
    end proc:
    seq( gsigma(n,3,2),n=1..80) ;
  • Mathematica
    f[p_, e_] := (p^(3*(Floor[e/2] + 1)) - 1)/(p^3 - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Mar 24 2023 *)
  • PARI
    a(n) = sumdiv(n, d, if (issquare(d), sqrtint(d)^3)); \\ Michel Marcus, Mar 24 2023
    
  • Python
    from math import prod
    from sympy import factorint
    def A361794(n): return prod((p**(3*(e>>1)+3)-1)//(p**3-1) for p, e in factorint(n).items()) # Chai Wah Wu, Mar 24 2023

Formula

a(n) = Sum_{d^2|n} d^3.
Multiplicative with a(p^e) = (p^(3*(floor(e/2) + 1)) - 1)/(p^3 - 1). - Amiram Eldar, Mar 24 2023
G.f.: Sum_{k>=1} k^3 * x^(k^2) / (1 - x^(k^2)). - Ilya Gutkovskiy, Jun 05 2024
Showing 1-2 of 2 results.