cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 60 results. Next

A326060 a(n) = gcd(n-A035316(n), A285309(n)-n), where A035316 and A285309 give respectively the sums of square and nonsquare divisors of n.

Original entry on oeis.org

1, 1, 2, 1, 4, 5, 6, 1, 1, 1, 10, 1, 12, 1, 2, 1, 16, 1, 18, 1, 10, 1, 22, 1, 1, 5, 1, 23, 28, 1, 30, 1, 2, 1, 2, 1, 36, 1, 2, 5, 40, 1, 42, 1, 1, 5, 46, 1, 1, 1, 10, 1, 52, 4, 2, 1, 2, 1, 58, 1, 60, 1, 1, 1, 2, 1, 66, 1, 2, 1, 70, 1, 72, 1, 1, 1, 2, 1, 78, 1, 1, 1, 82, 1, 2, 5, 2, 1, 88, 2, 10, 1, 2, 1, 2, 15, 96, 1, 1, 1, 100, 1, 102, 1, 2
Offset: 1

Views

Author

Antti Karttunen, Jun 06 2019

Keywords

Comments

Below 2^27 there are following numbers k such that a(k) is equal to A326059(k), and quotient A326058(k)/A326059(k) is odd: 6, 28, 496, 1625, 2057, 8128, 33550336, 107452235. The odd terms are factored as: 1625 = 5^3 * 13, 2057 = 11^2 * 17, 107452235 = 5 * 11^2 * 97 * 1831.

Crossrefs

Programs

Formula

a(n) = gcd(A326058(n), A326059(n)) = gcd(n-A035316(n), A285309(n)-n).

A001157 a(n) = sigma_2(n): sum of squares of divisors of n.

Original entry on oeis.org

1, 5, 10, 21, 26, 50, 50, 85, 91, 130, 122, 210, 170, 250, 260, 341, 290, 455, 362, 546, 500, 610, 530, 850, 651, 850, 820, 1050, 842, 1300, 962, 1365, 1220, 1450, 1300, 1911, 1370, 1810, 1700, 2210, 1682, 2500, 1850, 2562, 2366, 2650, 2210, 3410, 2451, 3255
Offset: 1

Views

Author

Keywords

Comments

If the canonical factorization of n into prime powers is the product of p^e(p) then sigma_k(n) = Product_p ((p^((e(p)+1)*k))-1)/(p^k-1).
sigma_2(n) is the sum of the squares of the divisors of n.
Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001.
Row sums of triangles A134575 and A134559. - Gary W. Adamson, Nov 02 2007
Also sum of square divisors of n^2. - Michel Marcus, Jan 14 2014
Conjecture: For each k = 2,3,..., all the rational numbers sigma_k(n)/n^k = Sum_{d|n} 1/d^k (n = 1,2,3,...) have pairwise distinct fractional parts. - Zhi-Wei Sun, Oct 15 2015
5 is the only prime entry in the sequence. - Drake Thomas, Dec 18 2016
4*a(n) = sum of squares of even divisors of 2*n. - Wolfdieter Lang, Jan 07 2017

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 827.
  • T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 38.
  • D. M. Bressoud, Proofs and Confirmations, Camb. Univ. Press, 1999; p. 11.
  • P. A. MacMahon, The connexion between the sum of the squares of the divisors and the number of partitions of a given number, Messenger Math., 54 (1924), 113-116. Collected Papers, MIT Press, 1978, Vol. I, pp. 1364-1367. See Table I. The entry 53 should be 50. - N. J. A. Sloane, May 21 2014
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. also A192794, A082063 (gcd(a(n),n) and its largest prime factor); A179931, A192795 (gcd(a(n),A000203(n)) and largest prime factor).
Main diagonal of the array in A242639.
Cf. A333972 (Dgf at s=4).

Programs

  • Haskell
    a001157 n = s n 1 1 a000040_list where
       s 1 1 y _          = y
       s m x y ps'@(p:ps)
         | m `mod` p == 0 = s (m `div` p) (x * p^2) y ps'
         | x > 1          = s m 1 (y * (x * p^2 - 1) `div` (p^2 - 1)) ps
         | otherwise      = s m 1 y ps
    -- Reinhard Zumkeller, Jul 10 2011
    
  • Magma
    [DivisorSigma(2,n): n in [1..50]]; // Bruno Berselli, Apr 10 2013
    
  • Maple
    with(numtheory); A001157 := n->sigma[2](n); [seq(sigma[2](n), n=1..100)];
  • Mathematica
    Table[DivisorSigma[2, n], {n, 1, 50}] (* Stefan Steinerberger, Mar 24 2006 *)
    DivisorSigma[2,Range[50]] (* Harvey P. Dale, Aug 22 2016 *)
  • Maxima
    makelist(divsum(n,2),n,1,20); /* Emanuele Munarini, Mar 26 2011 */
    
  • PARI
    a(n)=if(n<1,0,sigma(n,2))
    
  • PARI
    a(n)=if(n<1,0,direuler(p=2,n,1/(1-X)/(1-p^2*X))[n])
    
  • PARI
    a(n)=if(n<1,0,n*polcoeff(sum(k=1,n,x^k/(x^k-1)^2/k,x*O(x^n)),n)) /* Michael Somos, Jan 29 2005 */
    
  • PARI
    N=99; q='q+O('q^N); Vec(sum(n=1,N,n^2*q^n/(1-q^n)))  /* Joerg Arndt, Feb 04 2011 */
    
  • PARI
    a(n) = sumdiv(n^2, d, issquare(d)*d); \\ Michel Marcus, Jan 14 2014
    
  • Python
    from sympy import divisor_sigma
    def a(n): return divisor_sigma(n, 2)
    print([a(n) for n in range(1, 51)]) # Michael S. Branicky, Jan 05 2021
    
  • Python
    from math import prod
    from sympy import factorint
    def a(n): return prod((p**(2*e+2)-1)//(p**2-1) for p, e in factorint(n).items())
    print([a(n) for n in range(1, 51)]) # Michael S. Branicky, Feb 25 2024
  • Sage
    [sigma(n,2)for n in range(1,51)] # Zerinvary Lajos, Jun 04 2009
    

Formula

G.f.: Sum_{k>0} k^2 x^k/(1-x^k). Dirichlet g.f.: zeta(s)*zeta(s-2). - Michael Somos, Apr 05 2003
Multiplicative with a(p^e) = (p^(2e+2)-1)/(p^2-1). - David W. Wilson, Aug 01 2001
G.f. for sigma_k(n): Sum_{m>0} m^k*x^m/(1-x^m). - Vladeta Jovovic, Oct 18 2002
L.g.f.: -log(Product_{j>=1} (1-x^j)^j) = Sum_{n>=1} a(n)/n*x^n. - Joerg Arndt, Feb 04 2011
Equals A127093 * [1, 2, 3, ...]. - Gary W. Adamson, May 10 2007
Equals A051731 * [1, 4, 9, 16, 25, ...]. A051731 * [1/1, 1/2, 1/3, 1/4, ...] = [1/1, 5/4, 10/9, 21/16, 26/25, ...]. - Gary W. Adamson, Nov 02 2007
Row sums of triangle A134841. - Gary W. Adamson, Nov 12 2007
a(n) = A035316(n^2). - Michel Marcus, Jan 14 2014
Conjecture: a(n) = sigma(n^2*rad(n))/sigma(rad(n)), where sigma = A000203 and rad = A007947. - Velin Yanev, Aug 20 2017
G.f.: Sum_{k>=1} x^k*(1 + x^k)/(1 - x^k)^3. - Ilya Gutkovskiy, Oct 24 2018
a(n) = a(n/4) + A050461(n) + A076577(n/2) + A050465(n) where A(.) are zero for non-integer arguments. - R. J. Mathar, May 25 2020
Sum_{k>=1} 1/a(k) = A109694 = 1.53781289182725616253866100273826833091936004947322354929617689659426330445... - Vaclav Kotesovec, Sep 26 2020
G.f.: Sum_{n >= 1} q^(n^2)*(n^2 - ((n-1)^2 - 2)*q^n - ((n+1)^2 - 2)*q^(2*n) + n^2*q^(3*n))/(1 - q^n)^3 - apply the operator x*d/dx twice to equation 5 in Arndt and set x = 1. - Peter Bala, Jan 21 2021
From Vaclav Kotesovec, Aug 07 2022: (Start)
Sum_{k=1..n} a(k) = A064602(n) ~ zeta(3) * n^3 / 3.
Sum_{k=1..n} (-1)^k * a(k) ~ zeta(3) * n^3 / 24. (End)
a(n) = Sum_{1 <= i, j <= n} tau(gcd(i, j, n)) = Sum_{d divides n} tau(d) * J_2(n/d), where the divisor function tau(n) = A000005(n) and the Jordan totient function J_2(n) = A007434(n). - Peter Bala, Jan 22 2024

A046951 a(n) is the number of squares dividing n.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 2, 1, 1, 1, 2, 2, 1, 2, 2, 1, 1, 1, 3, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 3, 2, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 4, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 2, 2, 1, 1, 1, 3, 3, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 3, 1, 2, 2, 4, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2
Offset: 1

Views

Author

Simon Colton (simonco(AT)cs.york.ac.uk)

Keywords

Comments

Rediscovered by the HR automatic theory formation program.
a(n) depends only on prime signature of n (cf. A025487, A046523). So a(24) = a(375) since 24 = 2^3*3 and 375 = 3*5^3 both have prime signature (3, 1).
First differences of A013936. Average value tends towards Pi^2/6 = 1.644934... (A013661, A013679). - Henry Bottomley, Aug 16 2001
We have a(n) = A159631(n) for all n < 125, but a(125) = 2 < 3 = A159631(125). - Steven Finch, Apr 22 2009
Number of 2-generated Abelian groups of order n, if n > 1. - Álvar Ibeas, Dec 22 2014 [In other words, number of order-n abelian groups with rank <= 2. Proof: let b(n) be such number. A finite abelian group is the inner direct product of all Sylow-p subgroups, so {b(n)} is multiplicative. Obviously b(p^e) = floor(e/2)+1 (corresponding to the groups C_(p^r) X C_(p^(e-r)) for 0 <= r <= floor(e/2)), hence b(n) = a(n) for all n. - Jianing Song, Nov 05 2022]
Number of ways of writing n = r*s such that r|s. - Eric M. Schmidt, Jan 08 2015
The number of divisors of the square root of the largest square dividing n. - Amiram Eldar, Jul 07 2020
The number of unordered factorizations of n into cubefree powers of primes (1, primes and squares of primes, A166684). - Amiram Eldar, Jun 12 2025

Examples

			a(16) = 3 because the squares 1, 4, and 16 divide 16.
G.f. = x + x^2 + x^3 + 2*x^4 + x^5 + x^6 + x^7 + 2*x^8 + 2*x^9 + x^10 + ...
		

Crossrefs

One more than A071325.
Differs from A096309 for the first time at n=32, where a(32) = 3, while A096309(32) = 2 (and also A185102(32) = 2).
Sum of the k-th powers of the square divisors of n for k=0..10: this sequence (k=0), A035316 (k=1), A351307 (k=2), A351308 (k=3), A351309 (k=4), A351310 (k=5), A351311 (k=6), A351313 (k=7), A351314 (k=8), A351315 (k=9), A351315 (k=10).
Sequences of the form n^k * Sum_{d^2|n} 1/d^k for k = 0..10: this sequence (k=0), A340774 (k=1), A351600 (k=2), A351601 (k=3), A351602 (k=4), A351603 (k=5), A351604 (k=6), A351605 (k=7), A351606 (k=8), A351607 (k=9), A351608 (k=10).
Cf. A082293 (a(n)==2), A082294 (a(n)==3).

Programs

  • Haskell
    a046951 = sum . map a010052 . a027750_row
    -- Reinhard Zumkeller, Dec 16 2013
    
  • Magma
    [#[d: d in Divisors(n)|IsSquare(d)]:n in [1..120]]; // Marius A. Burtea, Jan 21 2020
    
  • Maple
    A046951 := proc(n)
        local a,s;
        a := 1 ;
        for p in ifactors(n)[2] do
            a := a*(1+floor(op(2,p)/2)) ;
        end do:
        a ;
    end proc: # R. J. Mathar, Sep 17 2012
    # Alternatively:
    isbidivisible := (n, d) -> igcd(n, d) = d and igcd(n/d, d) = d:
    a := n -> nops(select(k -> isbidivisible(n, k), [seq(1..n)])): # Peter Luschny, Jun 13 2025
  • Mathematica
    a[n_] := Length[ Select[ Divisors[n], IntegerQ[Sqrt[#]]& ] ]; Table[a[n], {n, 1, 105}] (* Jean-François Alcover, Jun 26 2012 *)
    Table[Length[Intersection[Divisors[n], Range[10]^2]], {n, 100}] (* Alonso del Arte, Dec 10 2012 *)
    a[ n_] := If[ n < 1, 0, Sum[ Mod[ DivisorSigma[ 0, d], 2], {d, Divisors @ n}]]; (* Michael Somos, Jun 13 2014 *)
    a[ n_] := If[ n < 2, Boole[ n == 1], Times @@ (Quotient[ #[[2]], 2] + 1 & /@ FactorInteger @ n)]; (* Michael Somos, Jun 13 2014 *)
    a[ n_] := If[ n < 0, 0, SeriesCoefficient[ Sum[ x^k^2 / (1 - x^k^2), {k, Sqrt @ n}], {x, 0, n}]]; (* Michael Somos, Jun 13 2014 *)
    f[p_, e_] := 1 + Floor[e/2]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Sep 15 2020 *)
  • PARI
    a(n)=my(f=factor(n));for(i=1,#f[,1],f[i,2]\=2);numdiv(factorback(f)) \\ Charles R Greathouse IV, Dec 11 2012
    
  • PARI
    a(n) = direuler(p=2, n, 1/((1-X^2)*(1-X)))[n]; \\ Michel Marcus, Mar 08 2015
    
  • PARI
    a(n)=factorback(apply(e->e\2+1, factor(n)[,2])) \\ Charles R Greathouse IV, Sep 17 2015
    
  • Python
    from math import prod
    from sympy import factorint
    def A046951(n): return prod((e>>1)+1 for e in factorint(n).values()) # Chai Wah Wu, Aug 04 2024
    
  • Python
    def is_bidivisible(n, d) -> bool: return gcd(n, d) == d and gcd(n//d, d) == d
    def aList(n) -> list[int]: return [k for k in range(1, n+1) if is_bidivisible(n, k)]
    print([len(aList(n)) for n in range(1, 126)])  # Peter Luschny, Jun 13 2025
  • Scheme
    (definec (A046951 n) (if (= 1 n) 1 (* (A008619 (A007814 n)) (A046951 (A064989 n)))))
    (define (A008619 n) (+ 1 (/ (- n (modulo n 2)) 2)))
    ;; Antti Karttunen, Nov 14 2016
    

Formula

a(p^k) = A008619(k) = [k/2] + 1. a(A002110(n)) = 1 for all n. (This is true for any squarefree number, A005117). - Original notes clarified by Antti Karttunen, Nov 14 2016
a(n) = |{(i, j) : i*j = n AND i|j}| = |{(i, j) : i*j^2 = n}|. Also tau(A000188(n)), where tau = A000005.
Multiplicative with p^e --> floor(e/2) + 1, p prime. - Reinhard Zumkeller, May 20 2007
a(A130279(n)) = n and a(m) <> n for m < A130279(n); A008966(n)=0^(a(n) - 1). - Reinhard Zumkeller, May 20 2007
Inverse Moebius transform of characteristic function of squares (A010052). Dirichlet g.f.: zeta(s)*zeta(2s).
G.f.: Sum_{k > 0} x^(k^2)/(1 - x^(k^2)). - Vladeta Jovovic, Dec 13 2002
a(n) = Sum_{k=1..A000005(n)} A010052(A027750(n,k)). - Reinhard Zumkeller, Dec 16 2013
a(n) = Sum_{k = 1..n} ( floor(n/k^2) - floor((n-1)/k^2) ). - Peter Bala, Feb 17 2014
From Antti Karttunen, Nov 14 2016: (Start)
a(1) = 1; for n > 1, a(n) = A008619(A007814(n)) * a(A064989(n)).
a(n) = A278161(A156552(n)). (End)
G.f.: Sum_{k>0}(theta(q^k)-1)/2, where theta(q)=1+2q+2q^4+2q^9+2q^16+... - Mamuka Jibladze, Dec 04 2016
From Antti Karttunen, Nov 12 2017: (Start)
a(n) = A000005(n) - A056595(n).
a(n) = 1 + A071325(n).
a(n) = 1 + A001222(A293515(n)). (End)
L.g.f.: -log(Product_{k>=1} (1 - x^(k^2))^(1/k^2)) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, Jul 30 2018
a(n) = Sum_{d|n} A000005(d) * A008836(n/d). - Torlach Rush, Jan 21 2020
a(n) = A000005(sqrt(A008833(n))). - Amiram Eldar, Jul 07 2020
a(n) = Sum_{d divides n} mu(core(d)^2), where core(n) = A007913(n). - Peter Bala, Jan 24 2024

Extensions

Data section filled up to 125 terms and wrong claim deleted from Crossrefs section by Antti Karttunen, Nov 14 2016

A001156 Number of partitions of n into squares.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 2, 2, 3, 4, 4, 4, 5, 6, 6, 6, 8, 9, 10, 10, 12, 13, 14, 14, 16, 19, 20, 21, 23, 26, 27, 28, 31, 34, 37, 38, 43, 46, 49, 50, 55, 60, 63, 66, 71, 78, 81, 84, 90, 98, 104, 107, 116, 124, 132, 135, 144, 154, 163, 169, 178, 192, 201, 209, 220, 235, 247, 256
Offset: 0

Views

Author

Keywords

Comments

Number of partitions of n such that number of parts equal to k is multiple of k for all k. - Vladeta Jovovic, Aug 01 2004
Of course p_{4*square}(n)>0. In fact p_{4*square}(32n+28)=3 times p_{4*square}(8n+7) and p_{4*square}(72n+69) is even. These seem to be the only arithmetic properties the function p_{4*square(n)} possesses. Similar results hold for partitions into positive squares, distinct squares and distinct positive squares. - Michael David Hirschhorn, May 05 2005
The Heinz numbers of these partitions are given by A324588. - Gus Wiseman, Mar 09 2019

Examples

			p_{4*square}(23)=1 because 23 = 3^2 + 3^2 + 2^2 + 1^2 and there is no other partition of 23 into squares.
G.f.: A(x) = 1 + x + x^2 + x^3 + 2*x^4 + 2*x^5 + 2*x^6 + 2*x^7 +...
such that the g.f. A(x) satisfies the identity [_Paul D. Hanna_]:
A(x) = 1/((1-x)*(1-x^4)*(1-x^9)*(1-x^16)*(1-x^25)*...)
A(x) = 1 + x/(1-x) + x^4/((1-x)*(1-x^4)) + x^9/((1-x)*(1-x^4)*(1-x^9)) + x^16/((1-x)*(1-x^4)*(1-x^9)*(1-x^16)) + ...
From _Gus Wiseman_, Mar 09 2019: (Start)
The a(14) = 6 integer partitions into squares are:
  (941)
  (911111)
  (44411)
  (44111111)
  (41111111111)
  (11111111111111)
while the a(14) = 6 integer partitions in which the multiplicity of k is a multiple of k for all k are:
  (333221)
  (33311111)
  (22222211)
  (2222111111)
  (221111111111)
  (11111111111111)
(End)
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000041, A000161 (partitions into 2 squares), A000290, A033461, A131799, A218494, A285218, A304046.
Cf. A078134 (first differences).
Row sums of A243148.
Euler trans. of A010052 (see also A308297).

Programs

  • Haskell
    a001156 = p (tail a000290_list) where
       p _          0 = 1
       p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m
    -- Reinhard Zumkeller, Oct 31 2012, Aug 14 2011
    
  • Magma
    m:=70; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (&*[1/(1-x^(k^2)): k in [1..(m+2)]]) )); // G. C. Greubel, Nov 11 2018
  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1)+ `if`(i^2>n, 0, b(n-i^2, i))))
        end:
    a:= n-> b(n, isqrt(n)):
    seq(a(n), n=0..120);  # Alois P. Heinz, May 30 2014
  • Mathematica
    CoefficientList[ Series[Product[1/(1 - x^(m^2)), {m, 70}], {x, 0, 68}], x] (* Or *)
    Join[{1}, Table[Length@PowersRepresentations[n, n, 2], {n, 68}]] (* Robert G. Wilson v, Apr 12 2005, revised Sep 27 2011 *)
    f[n_] := Length@ IntegerPartitions[n, All, Range@ Sqrt@ n^2]; Array[f, 67] (* Robert G. Wilson v, Apr 14 2013 *)
    b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-1] + If[i^2>n, 0, b[n-i^2, i]]]]; a[n_] := b[n, Sqrt[n]//Floor]; Table[a[n], {n, 0, 120}] (* Jean-François Alcover, Nov 02 2015, after Alois P. Heinz *)
  • PARI
    {a(n)=polcoeff(1/prod(k=1, sqrtint(n+1), 1-x^(k^2)+x*O(x^n)), n)} \\ Paul D. Hanna, Mar 09 2012
    
  • PARI
    {a(n)=polcoeff(1+sum(m=1, sqrtint(n+1), x^(m^2)/prod(k=1, m, 1-x^(k^2)+x*O(x^n))), n)} \\ Paul D. Hanna, Mar 09 2012
    

Formula

G.f.: Product_{m>=1} 1/(1-x^(m^2)).
G.f.: Sum_{n>=0} x^(n^2) / Product_{k=1..n} (1 - x^(k^2)). - Paul D. Hanna, Mar 09 2012
a(n) = (1/n)*Sum_{k=1..n} A035316(k)*a(n-k). - Vladeta Jovovic, Nov 20 2002
a(n) = f(n,1,3) with f(x,y,z) = if xReinhard Zumkeller, Nov 08 2009
Conjecture (Jan Bohman, Carl-Erik Fröberg, Hans Riesel, 1979): a(n) ~ c * n^(-alfa) * exp(beta*n^(1/3)), where c = 1/18.79656, beta = 3.30716, alfa = 1.16022. - Vaclav Kotesovec, Aug 19 2015
From Vaclav Kotesovec, Dec 29 2016: (Start)
Correct values of these constants are:
1/c = sqrt(3) * (4*Pi)^(7/6) / Zeta(3/2)^(2/3) = 17.49638865935104978665...
alfa = 7/6 = 1.16666666666666666...
beta = 3/2 * (Pi/2)^(1/3) * Zeta(3/2)^(2/3) = 3.307411783596651987...
a(n) ~ 3^(-1/2) * (4*Pi*n)^(-7/6) * Zeta(3/2)^(2/3) * exp(2^(-4/3) * 3 * Pi^(1/3) * Zeta(3/2)^(2/3) * n^(1/3)). [Hardy & Ramanujan, 1917]
(End)

Extensions

More terms from Eric W. Weisstein
More terms from Gh. Niculescu (ghniculescu(AT)yahoo.com), Oct 08 2006

A078134 Number of ways to write n as sum of squares > 1.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 2, 1, 1, 0, 2, 1, 1, 0, 2, 3, 1, 1, 2, 3, 1, 1, 3, 3, 3, 1, 5, 3, 3, 1, 5, 5, 3, 3, 5, 7, 3, 3, 6, 8, 6, 3, 9, 8, 8, 3, 9, 10, 9, 6, 9, 14, 9, 8, 11, 15, 12, 9, 15, 15, 16, 9, 18, 18, 18, 13, 19, 23, 18, 17, 21, 28, 22, 19, 26, 30, 28, 19, 31, 34, 34
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 19 2002

Keywords

Comments

a(A078135(n))=0; a(A078136(n))=1; a(A078137(n))>0;
Conjecture (lower bound): for all k exists b(k) such that a(n)>k for n>b(k); see b(0)=A078135(12)=23 and b(1)=A078136(15)=39. This is true - see comments by Hieronymus Fischer.
Also first difference of A001156 (number of partitions of n into squares). - Wouter Meeussen, Oct 22 2005
Comments from Hieronymus Fischer, Nov 11 2007 (Start): First statement of monotony: a(n+k^2)>=a(n) for all k>1. Proof: we restrict ourselves on a(n)>0 (the case a(n)=0 is trivial). Let T(i), 1<=i<=a(n), be the a(n) different sum expressions of squares >1 representing n. Then, adding k^2 to those expressions, we get a(n) sums of squares T(i)+k^2, obviously representing n+k^2, thus a(n+k^2) cannot be less than a(n).
Second statement of monotony: a(n+m)>=max(a(n),a(m)) for all m with a(m)>1. Proof: let T(i), 1<=i<=a(n), be the a(n) different sum expressions of squares >1 representing n; let S(i), 1<=i<=a(m), be the a(m) different sum expressions of squares >1 representing m. Then, adding those expressions, we get a(n) sums of squares T(i)+S(1), representing n+m, further we get a(m) sums T(1)+S(i), also representing n+m, thus a(n+m) cannot be less than the maximum of a(n) and a(m).
The author's conjecture holds true. Proof by induction: b(0) exists; if b(k) exists, then a(j)>k for all j>b(k). Setting m:=b(k)+1, we find that there are k+1 sums B(0,i) of squares >1, 1<=i<=k+1, with m=B(0,i). Further there are k+1 such sum expressions B(1,i), B(2,i) and B(3,i), 1<=i<=k+1, representing m+1, m+2 and m+3, respectively. For n>b(k) we have n=m+4*floor((n-m)/4)+(n-m) mod 4.
Thus n=m+r+s*2^2, where r=0,1,2 or 3. Hence n can be written B(r,i)+s*2^2 and there are k+1 such representations. Let q be the maximal number (to be squared) occurring as a term within those sum expressions B(r,i), 0<=r<=3,1<=i<=k+1. We select a number p>q and we set c:=b(k)+p^2. For n>c, we have the k+1 representations B(r(n),i)+s(n)*2^2.
Additionally, for n-p^2 (which is >b(k)) there are also k+1 representations B(r_p,i)+s_p*2^2, where r_p:=r(n-p^2), s_p:=s(n-p^2). Thus n can be written B(r(n),i)+s(n)*2^2, 1<=i<=k+1 and B(r_p,i)+s_p*2^2+p^2, 1<=i<=k+1.
By choice of p all these sum representations of n are different, which implies, that there are 2k+2 such representations. It follows a(n)>2k+2>k+1 for all n>c, which implies, that b(k+1) exists.
A more precise formulation of the author's conjecture is "b(k):=min( n | a(j)>k for all j>n) exists for all k>=0". (End)
A033183(n) <= a(n). [From Reinhard Zumkeller, Nov 07 2009]

Examples

			a(42)=3: 2*3^2+6*2^2 = 4^2+2*3^2+2*2^2 = 5^2+3^2+2*2^2.
		

Crossrefs

See A134754 for the sequence representing b(k).

Programs

  • Haskell
    a078134 = p $ drop 2 a000290_list where
       p _          0 = 1
       p ks'@(k:ks) x = if x < k then 0 else p ks' (x - k) + p ks x
    -- Reinhard Zumkeller, May 04 2013
  • Mathematica
    Join[{1}, Table[Length[PowersRepresentations[n, n, 2]], {n, 1, 90}]] // Differences
    (* or *)
    m = 91; CoefficientList[Product[1/(1 - x^(k^2)), {k, 1, m}] + O[x]^m, x] // Differences (* Jean-François Alcover, Mar 01 2019 *)

Formula

a(n) = 1/n*Sum_{k=1..n} (A035316(k)-1)*a(n-k), a(0) = 1. - Vladeta Jovovic, Nov 20 2002
G.f. g(x)=product{k>1, 1/(1-x^(k^2))}-1 = 1/((1-x^4)*(1-x^9)*(1-x^16)*(1-x^25)*(1-x^36)*...)-1. - Hieronymus Fischer, Nov 19 2007
a(n) ~ exp(3*Pi^(1/3) * Zeta(3/2)^(2/3) * n^(1/3) / 2^(4/3)) * Zeta(3/2)^(4/3) / (2^(11/3) * sqrt(3) * Pi^(5/6) * n^(11/6)). - Vaclav Kotesovec, Jan 05 2017

A087153 Number of partitions of n into nonsquares.

Original entry on oeis.org

1, 0, 1, 1, 1, 2, 3, 3, 5, 5, 8, 9, 13, 15, 20, 24, 30, 37, 47, 55, 71, 83, 103, 123, 151, 178, 218, 257, 310, 366, 440, 515, 617, 722, 857, 1003, 1184, 1380, 1625, 1889, 2214, 2570, 3000, 3472, 4042, 4669, 5414, 6244, 7221, 8303, 9583, 10998, 12655, 14502
Offset: 0

Views

Author

Reinhard Zumkeller, Aug 21 2003

Keywords

Comments

Also, number of partitions of n where there are fewer than k parts equal to k for all k. - Jon Perry and Vladeta Jovovic, Aug 04 2004. E.g. a(8)=5 because we have 8=6+2=5+3=4+4=3+3+2.
Convolution of A276516 and A000041. - Vaclav Kotesovec, Dec 30 2016
From Gus Wiseman, Apr 02 2019: (Start)
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). The Heinz numbers of the integer partitions described in Perry and Jovovic's comment are given by A325128, while the Heinz numbers of the integer partitions described in the name are given by A325129. In the former case, the first 10 terms count the following integer partitions:
() (2) (3) (4) (5) (6) (7) (8) (9)
(32) (33) (43) (44) (54)
(42) (52) (53) (63)
(62) (72)
(332) (432)
while in the latter case they count the following:
() (2) (3) (22) (5) (6) (7) (8) (63)
(32) (33) (52) (53) (72)
(222) (322) (62) (333)
(332) (522)
(2222) (3222)
(End)

Examples

			n=7: 2+5 = 2+2+3 = 7: a(7)=3;
n=8: 2+6 = 2+2+2+2 = 2+3+3 = 3+5 = 8: a(8)=5;
n=9: 2+7 = 2+2+5 = 2+2+2+3 = 3+3+3 = 3+6: a(9)=5.
		

References

  • G. E. Andrews, K. Eriksson, Integer Partitions, Cambridge Univ. Press, 2004. See page 48.

Crossrefs

Programs

  • Haskell
    a087153 = p a000037_list where
       p _          0 = 1
       p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m
    -- Reinhard Zumkeller, Apr 25 2013
    
  • Maple
    g:=product((1-x^(i^2))/(1-x^i),i=1..70):gser:=series(g,x=0,60):seq(coeff(gser,x^n),n=1..53); # Emeric Deutsch, Feb 09 2006
  • Mathematica
    nn=54; CoefficientList[ Series[ Product[ Sum[x^(i*j), {j, 0, i - 1}], {i, 1, nn}], {x, 0, nn}], x] (* Robert G. Wilson v, Aug 05 2004 *)
    nmax = 100; CoefficientList[Series[Product[(1 - x^(k^2))/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Dec 29 2016 *)
  • PARI
    first(n)=my(x='x+O('x^(n+1))); Vec(prod(m=1,sqrtint(n), (1-x^m^2)/(1-x^m))*prod(m=sqrtint(n)+1,n,1/(1-x^m))) \\ Charles R Greathouse IV, Aug 28 2016

Formula

G.f.: Product_{m>0} (1-x^(m^2))/(1-x^m). - Vladeta Jovovic, Aug 21 2003
a(n) = (1/n)*Sum_{k=1..n} (A000203(k)-A035316(k))*a(n-k), a(0)=1. - Vladeta Jovovic, Aug 21 2003
G.f.: Product_{i>=1} (Sum_{j=0..i-1} x^(i*j)). - Jon Perry, Jul 26 2004
a(n) ~ exp(Pi*sqrt(2*n/3) - 3^(1/4) * Zeta(3/2) * n^(1/4) / 2^(3/4) - 3*Zeta(3/2)^2/(32*Pi)) * sqrt(Pi) / (2^(3/4) * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Dec 30 2016

Extensions

Zeroth term added by Franklin T. Adams-Watters, Jan 25 2010

A069290 Sum of the square roots of the square divisors of n.

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 1, 3, 4, 1, 1, 3, 1, 1, 1, 7, 1, 4, 1, 3, 1, 1, 1, 3, 6, 1, 4, 3, 1, 1, 1, 7, 1, 1, 1, 12, 1, 1, 1, 3, 1, 1, 1, 3, 4, 1, 1, 7, 8, 6, 1, 3, 1, 4, 1, 3, 1, 1, 1, 3, 1, 1, 4, 15, 1, 1, 1, 3, 1, 1, 1, 12, 1, 1, 6, 3, 1, 1, 1, 7, 13, 1, 1, 3, 1, 1, 1, 3, 1, 4, 1, 3, 1, 1, 1, 7, 1, 8, 4, 18, 1, 1
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 14 2002

Keywords

Comments

a(m)=1 iff m is squarefree (A005117).

Examples

			Square divisors for n=48: {1, 2^2, 4^2}, so a(48) = 1+2+4 = 7.
		

Crossrefs

Programs

  • Mathematica
    nn = 102;f[list_, i_] := list[[i]]; a =Table[If[IntegerQ[n^(1/2)], n^(1/2), 0], {n, 1, nn}]; b =Table[1, {n, 1, nn}]; Table[DirichletConvolve[f[a, n], f[b, n], n, m], {m, 1, nn}] (* Geoffrey Critzer, Feb 21 2015 *)
    f[p_, e_] := (p^(Floor[e/2] + 1) - 1)/(p-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 20 2020 *)
  • PARI
    vector(102, n, sumdiv(n, d, issquare(d)*sqrtint(d)))
    
  • PARI
    a(n)={my(s=0);fordiv(n,d,if(issquare(d),s+=sqrtint(d)));s;} \\ Joerg Arndt, Feb 22 2015
    
  • Python
    from math import prod
    from sympy import factorint
    def A069290(n): return prod((p**(q//2+1)-1)//(p-1) for p, q in factorint(n).items()) # Chai Wah Wu, Jun 14 2021

Formula

Multiplicative with a(p^e) = (p^(floor(e/2)+1)-1)/(p-1). - Vladeta Jovovic, Apr 23 2002
G.f.: Sum_{k>=1} k*x^k^2/(1-x^k^2). - Ralf Stephan, Apr 21 2003
Dirichlet g.f.: zeta(2s-1)*zeta(s). Inverse Mobius transform of A037213. - R. J. Mathar, Oct 31 2011
Sum_{k=1..n} a(k) ~ n/2 * (log(n) - 1 + 3*gamma), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Jan 31 2019
a(n) = Sum_{k=1..n} (1 - ceiling(n/k^2) + floor(n/k^2)) * k. - Wesley Ivan Hurt, Jan 28 2021
a(n) = A000203(A000188(n)). - Amiram Eldar, Sep 01 2023
a(n) = Sum_{d|n} d^(1/2)*(1-(-1)^tau(d))/2, [See Mathar comment]. - Wesley Ivan Hurt, Jul 09 2025

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Jul 01 2002

A076752 a(n) = Sum_{d is a square divisor of n} n/d.

Original entry on oeis.org

1, 2, 3, 5, 5, 6, 7, 10, 10, 10, 11, 15, 13, 14, 15, 21, 17, 20, 19, 25, 21, 22, 23, 30, 26, 26, 30, 35, 29, 30, 31, 42, 33, 34, 35, 50, 37, 38, 39, 50, 41, 42, 43, 55, 50, 46, 47, 63, 50, 52, 51, 65, 53, 60, 55, 70, 57, 58, 59, 75, 61, 62, 70, 85, 65, 66, 67, 85, 69, 70, 71
Offset: 1

Views

Author

Vladeta Jovovic, Nov 12 2002

Keywords

Comments

The Mobius transform of this sequence appears to generate the sequence of absolute terms of A061020. - R. J. Mathar, Feb 08 2011

Examples

			a(8) = 10 as the square divisors of 8 are 1 and 4, and 8/1 + 8/4 = 10. - _David A. Corneth_, Nov 03 2017
		

Crossrefs

Programs

  • Mathematica
    Table[Total[n/Select[Divisors[n], IntegerQ@Sqrt@# &]], {n, 71}] (* Ivan Neretin, Sep 20 2017 *)
    Table[DivisorSum[n, n/# &, IntegerQ@ Sqrt@ # &], {n, 71}] (* Michael De Vlieger, Nov 03 2017 *)
    f[p_, e_] := p^(k = If[EvenQ[e], 0, 1])*(p^(e + 2 - k) - 1)/(p^2 - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, May 01 2020 *)
  • PARI
    a(n,f=factor(n))=prod(i=1,#f~, if(f[i,2]%2, f[i,1]*(f[i,1]^(f[i,2]+1)-1), (f[i,1]^(f[i,2]+2)-1))/(f[i,1]^2-1)) \\ Charles R Greathouse IV, Sep 20 2017
    
  • PARI
    a(n) = sumdiv(n, d, (n/d)*issquare(d)); \\ Michel Marcus, Nov 02 2017

Formula

Multiplicative with a(p^e) = (p^(e+2)-1)/(p^2-1) for even e and a(p^e) = p*(p^(e+1)-1)/(p^2-1) for odd e.
a(p ^ (m + 1)) = p * a(p^m) for even m and a(p ^ (m + 1)) = p * a(p^m) + 1 for odd m. - David A. Corneth, Nov 03 2017
a(n) = (lambda * sigma)(n) = (A008836 * A000203)(n), where * is the Dirichlet convolution. - Yuyang Zhao, Nov 02 2017
From Vaclav Kotesovec, Feb 04 2019: (Start)
Dirichlet g.f.: zeta(2*s)*zeta(s-1).
Sum_{k=1..n} a(k) ~ Pi^4 * n^2 / 180. (End)
G.f.: Sum_{k>=1} x^(k^2) / (1 - x^(k^2))^2. - Ilya Gutkovskiy, Aug 19 2021

A113061 Sum of cube divisors of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 28, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 28, 1, 9, 1, 1, 1, 1, 1, 1, 1, 73, 1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 9, 28, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 9
Offset: 1

Views

Author

Paul Barry, Oct 13 2005

Keywords

Comments

Multiplicative with a(p^e) = (p^(3*(1+floor(e/3)))-1)/(p^3-1). The Dirichlet generating function is zeta(s)*zeta(3s-3). The sequence is the inverse Mobius transform of n*A010057(n). - R. J. Mathar, Feb 18 2011

Crossrefs

Programs

  • Maple
    A113061 := proc(n)
        local a,pe,p,e;
        a := 1;
        for pe in ifactors(n)[2] do
            p := pe[1] ;
            e := pe[2] ;
            e := 3*(1+floor(e/3)) ;
            a := a*(p^e-1)/(p^3-1) ;
        end do:
        a ;
    end proc:
    seq(A113061(n),n=1..100) ; # R. J. Mathar, Oct 08 2017
  • Mathematica
    a[n_] := Sum[If[IntegerQ[d^(1/3)], d, 0], {d, Divisors[n]}];
    Array[a, 100] (* Jean-François Alcover, Nov 25 2017 *)
    f[p_, e_] := (p^(3*(1 + Floor[e/3])) - 1)/(p^3 - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, May 01 2020 *)
  • PARI
    A113061(n) = sumdiv(n,d,ispower(d,3)*d); \\ Antti Karttunen, Oct 08 2017
    
  • Scheme
    ;; With memoization-macro definec, after the multiplicative formula of R. J. Mathar:
    (definec (A113061 n) (if (= 1 n) n (let ((p (A020639 n)) (e (A067029 n))) (* (/ (+ -1 (expt p (* 3 (+ 1 (A002264 e))))) (+ -1 (expt p 3))) (A113061 (A028234 n)))))) ;; Antti Karttunen, Oct 08 2017

Formula

G.f.: Sum_{k>=1} k^3*x^(k^3)/(1 - x^(k^3)). - Ilya Gutkovskiy, Dec 24 2016
a(n) = Sum_{d|n} A010057(d)*d. - Antti Karttunen, Oct 08 2017
Sum_{k=1..n} a(k) ~ zeta(4/3)*n^(4/3)/4 - n/2. - Vaclav Kotesovec, Dec 01 2020

A358347 a(n) is the sum of the unitary divisors of n that are squares.

Original entry on oeis.org

1, 1, 1, 5, 1, 1, 1, 1, 10, 1, 1, 5, 1, 1, 1, 17, 1, 10, 1, 5, 1, 1, 1, 1, 26, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 50, 1, 1, 1, 1, 1, 1, 1, 5, 10, 1, 1, 17, 50, 26, 1, 5, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 10, 65, 1, 1, 1, 5, 1, 1, 1, 10, 1, 1, 26, 5, 1, 1, 1, 17, 82, 1
Offset: 1

Views

Author

Amiram Eldar, Nov 11 2022

Keywords

Comments

The number of unitary divisors of n that are squares is A056624(n).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[OddQ[e], 1, p^e + 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,2]%2, 1, f[i,1]^f[i,2] + 1));}

Formula

a(n) >= 1 with equality if and only if n is an exponentially odd number (A268335).
Multiplicative with a(p^e) = p^e + 1 if e is even, and 1 otherwise.
a(n) = A034448(n)/A358346(n).
Sum_{k=1..n} a(k) ~ c * n^(3/2), where c = zeta(3/2)/(3*zeta(5/2)) = 0.6491241554... .
Dirichlet g.f.: zeta(s)*zeta(2*s-2)/zeta(3*s-2). - Amiram Eldar, Jan 29 2023
a(n) = A034448(A350388(n)). - Amiram Eldar, Sep 09 2023
Showing 1-10 of 60 results. Next