cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A351600 a(n) = n^2 * Sum_{d^2|n} 1 / d^2.

Original entry on oeis.org

1, 4, 9, 20, 25, 36, 49, 80, 90, 100, 121, 180, 169, 196, 225, 336, 289, 360, 361, 500, 441, 484, 529, 720, 650, 676, 810, 980, 841, 900, 961, 1344, 1089, 1156, 1225, 1800, 1369, 1444, 1521, 2000, 1681, 1764, 1849, 2420, 2250, 2116, 2209, 3024, 2450, 2600, 2601, 3380, 2809
Offset: 1

Views

Author

Wesley Ivan Hurt, Feb 14 2022

Keywords

Crossrefs

Sequences of the form n^k * Sum_{d^2|n} 1/d^k for k = 0..10: A046951 (k=0), A340774 (k=1), this sequence (k=2), A351601 (k=3), A351602 (k=4), A351603 (k=5), A351604 (k=6), A351605 (k=7), A351606 (k=8), A351607 (k=9), A351608 (k=10).

Programs

  • Mathematica
    f[p_, e_] := p^2*(p^(2*e) - p^(2*Floor[(e - 1)/2]))/(p^2 - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* Amiram Eldar, Nov 13 2022 *)
  • PARI
    a(n) = n^2*sumdiv(n, d, if (issquare(d), 1/d)); \\ Michel Marcus, Feb 15 2022

Formula

G.f.: Sum_{k>=1} k^2 * x^(k^2) * (1 + x^(k^2)) / (1 - x^(k^2))^3. - Ilya Gutkovskiy, Feb 21 2022
Multiplicative with a(p^e) = p^2*(p^(2*e) - p^(2*floor((e-1)/2)))/(p^2 - 1). - Sebastian Karlsson, Feb 25 2022
Sum_{k=1..n} a(k) ~ c * n^3, where c = zeta(4)/3 = Pi^4/270 = 0.360774... . - Amiram Eldar, Nov 13 2022

A327626 Expansion of Sum_{k>=1} x^(k^3) / (1 - x^(k^3))^2.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 9, 9, 10, 11, 12, 13, 14, 15, 18, 17, 18, 19, 20, 21, 22, 23, 27, 25, 26, 28, 28, 29, 30, 31, 36, 33, 34, 35, 36, 37, 38, 39, 45, 41, 42, 43, 44, 45, 46, 47, 54, 49, 50, 51, 52, 53, 56, 55, 63, 57, 58, 59, 60, 61, 62, 63, 73, 65, 66, 67, 68, 69, 70, 71, 81, 73, 74, 75
Offset: 1

Views

Author

Ilya Gutkovskiy, Sep 19 2019

Keywords

Comments

Sum of divisors d of n such that n/d is a cube.
Inverse Moebius transform of A078429.

Crossrefs

Programs

  • Mathematica
    nmax = 75; CoefficientList[Series[Sum[x^(k^3)/(1 - x^(k^3))^2, {k, 1, Floor[nmax^(1/3)] + 1}], {x, 0, nmax}], x] // Rest
    a[n_] := DivisorSum[n, # &, IntegerQ[(n/#)^(1/3)] &]; Table[a[n], {n, 1, 75}]
    f[p_, e_] := (p^(e+3) - p^Mod[e, 3])/(p^3-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, May 25 2025 *)
  • PARI
    A327626(n) = sumdiv(n,d,ispower(n/d,3)*d); \\ Antti Karttunen, Sep 19 2019

Formula

a(n) = Sum_{d|n} A078429(d).
a(n) = Sum_{d|n} A010057(n/d) * d. Dirichlet convolution of A000027 and A010057.
D.g.f.: zeta(s-1)*zeta(3s). - R. J. Mathar, Jun 05 2020
Sum_{k=1..n} a(k) ~ Pi^6 * n^2 / 1890. - Vaclav Kotesovec, May 20 2021
Multiplicative with a(p^e) = (p^(e+3) - p^(e mod 3))/(p^3-1). - Amiram Eldar, May 25 2025

A385134 The sum of divisors d of n such that n/d is a biquadratefree number (A046100).

Original entry on oeis.org

1, 3, 4, 7, 6, 12, 8, 15, 13, 18, 12, 28, 14, 24, 24, 30, 18, 39, 20, 42, 32, 36, 24, 60, 31, 42, 40, 56, 30, 72, 32, 60, 48, 54, 48, 91, 38, 60, 56, 90, 42, 96, 44, 84, 78, 72, 48, 120, 57, 93, 72, 98, 54, 120, 72, 120, 80, 90, 60, 168, 62, 96, 104, 120, 84, 144
Offset: 1

Views

Author

Amiram Eldar, Jun 19 2025

Keywords

Crossrefs

The sum of divisors d of n such that n/d is: A001615 (squarefree), A002131 (odd), A069208 (powerful), A076752 (square), A129527 (power of 2), A254981 (cubefree), A244963 (nonsquarefree), A327626 (cube), this sequence (biquadratefree), A385135 (exponentially odd), A385136 (cubefull), A385137 (3-smooth), A385138 (5-rough), A385139 (exponentially 2^n).

Programs

  • Mathematica
    f[p_, e_] := p^(e-3)*(1 + p + p^2 + p^3); f[p_, 1] := 1 + p; f[p_, 2] := 1 + p + p^2; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n), p, e); prod(i = 1, #f~, p = f[i,1]; e = f[i,2]; p^max(e-3,0) * (p^min(e+1,4)-1)/(p-1));}

Formula

a(n) = Sum_{d | n} d * A307430(n/d) = n * Sum_{d | n} A307430(d) / d.
a(n) = Sum_{d^3 | n} mu(d) * A000203(n/d^3), where mu is the Moebius function (A008683).
Multiplicative with a(p) = 1 + p, a(p^2) = 1 + p + p^2, and a(p^e) = p^(e-3) * (1 + p + p^2 + p^3), for e >= 3.
In general, the sum of divisors d of n such that n/d is k-free (not divisible by a k-th power larger than 1) is multiplicative with a(p^e) = p^max(e-k+1,0) * (p^min(e+1,k)-1)/(p-1).
Dirichlet g.f.: zeta(s) * zeta(s-1) / zeta(4*s).
In general, the sum of divisors d of n such that n/d is k-free has Dirichlet g.f.: zeta(s) * zeta(s-1) / zeta(k*s).
Sum_{i=1..n} a(i) ~ (1575 / (2*Pi^6)) * n^2.

A385135 The sum of divisors d of n such that n/d is an exponentially odd number (A268335).

Original entry on oeis.org

1, 3, 4, 6, 6, 12, 8, 13, 12, 18, 12, 24, 14, 24, 24, 26, 18, 36, 20, 36, 32, 36, 24, 52, 30, 42, 37, 48, 30, 72, 32, 53, 48, 54, 48, 72, 38, 60, 56, 78, 42, 96, 44, 72, 72, 72, 48, 104, 56, 90, 72, 84, 54, 111, 72, 104, 80, 90, 60, 144, 62, 96, 96, 106, 84, 144
Offset: 1

Views

Author

Amiram Eldar, Jun 19 2025

Keywords

Crossrefs

The sum of divisors d of n such that n/d is: A001615 (squarefree), A002131 (odd), A069208 (powerful), A076752 (square), A129527 (power of 2), A254981 (cubefree), A244963 (nonsquarefree), A327626 (cube), A385134 (biquadratefree), this sequence (exponentially odd), A385136 (cubefull), A385137 (3-smooth), A385138 (5-rough), A385139 (exponentially 2^n).

Programs

  • Mathematica
    f[p_, e_] := p^e + (p^(e+1) - If[EvenQ[e], p, 1])/(p^2 - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n), p, e); prod(i = 1, #f~, p = f[i,1]; e = f[i,2]; p^e + (p^(e + 1) - if(e%2, 1, p))/(p^2 - 1));}

Formula

Multiplicative with a(p^e) = p^e + (p^(e+1) - 1)/(p^2-1) if e is odd, and p^e + (p^(e+1) - p)/(p^2-1) if e is even.
Dirichlet g.f.: zeta(s-1) * zeta(2*s) * Product_{p prime} (1 + 1/p^s - 1/p^(2*s)).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = zeta(4) * Product_{p prime} (1 + 1/p^2 - 1/p^4) = 1.542116283140158741... .

A385136 The sum of divisors d of n such that n/d is a cubefull number (A036966).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 9, 9, 10, 11, 12, 13, 14, 15, 19, 17, 18, 19, 20, 21, 22, 23, 27, 25, 26, 28, 28, 29, 30, 31, 39, 33, 34, 35, 36, 37, 38, 39, 45, 41, 42, 43, 44, 45, 46, 47, 57, 49, 50, 51, 52, 53, 56, 55, 63, 57, 58, 59, 60, 61, 62, 63, 79, 65, 66, 67, 68
Offset: 1

Views

Author

Amiram Eldar, Jun 19 2025

Keywords

Crossrefs

The sum of divisors d of n such that n/d is: A001615 (squarefree), A002131 (odd), A069208 (powerful), A076752 (square), A129527 (power of 2), A254981 (cubefree), A244963 (nonsquarefree), A327626 (cube), A385134 (biquadratefree), A385135 (exponentially odd), this sequence (cubefull), A385137 (3-smooth), A385138 (5-rough), A385139 (exponentially 2^n).

Programs

  • Mathematica
    f[p_, e_] := (p^(e+1) - p^e + p^(e-2) - 1)/(p-1); f[p_, 1] := p; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n), p, e); prod(i = 1, #f~, p = f[i,1]; e = f[i,2]; if(e == 1, p, (p^(e+1) - p^e + p^(e-2) - 1)/(p-1)));}

Formula

Multiplicative with a(p) = p and a(p^e) = (p^(e+1) - p^e + p^(e-2) - 1)/(p-1) for e >= 2.
Dirichlet g.f.: zeta(s-1) * zeta(s) * Product_{p prime} (1 - 1/p^s + 1/p^(3*s)).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = zeta(2) * Product_{p prime} (1 - 1/p^2 + 1/p^6) = 1.022486596136980366... .

A385137 The sum of divisors d of n such that n/d is a 3-smooth number (A003586).

Original entry on oeis.org

1, 3, 4, 7, 5, 12, 7, 15, 13, 15, 11, 28, 13, 21, 20, 31, 17, 39, 19, 35, 28, 33, 23, 60, 25, 39, 40, 49, 29, 60, 31, 63, 44, 51, 35, 91, 37, 57, 52, 75, 41, 84, 43, 77, 65, 69, 47, 124, 49, 75, 68, 91, 53, 120, 55, 105, 76, 87, 59, 140, 61, 93, 91, 127, 65, 132
Offset: 1

Views

Author

Amiram Eldar, Jun 19 2025

Keywords

Crossrefs

The sum of divisors d of n such that n/d is: A001615 (squarefree), A002131 (odd), A069208 (powerful), A076752 (square), A129527 (power of 2), A254981 (cubefree), A244963 (nonsquarefree), A327626 (cube), A385134 (biquadratefree), A385135 (exponentially odd), A385136 (cubefull), this sequence (3-smooth), A385138 (5-rough), A385139 (exponentially 2^n).

Programs

  • Mathematica
    f[p_, e_] := If[p < 5, (p^(e+1) - 1)/(p - 1), p^e]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n), p, e); prod(i = 1, #f~, p = f[i,1]; e = f[i,2]; if(p < 5, (p^(e + 1) - 1)/(p - 1), p^e));}

Formula

a(n) = A064987(n)/A385138(n).
Multiplicative with a(p^e) = (p^(e+1)-1)/(p-1) if p <= 3, and p^e if p >= 5.
In general, the sum of divisors d of n such that n/d is q-smooth (not divisible by a prime larger than q) is multiplicative with a(p^e) = (p^(e+1)-1)/(p-1) if p <= q, and p^e if p > q.
Dirichlet g.f.: zeta(s-1) / ((1 - 1/2^s) * (1 - 1/3^s)).
In general, the sum of divisors d of n such that n/d is q-smooth has Dirichlet g.f.: zeta(s-1) / Product_{p prime <= q} (1 - 1/q^s).
Sum_{k=1..n} a(k) ~ (3/4)*n^2.
In general, the sum of divisors d of n such that n/d is prime(k)-smooth has an average order c * n^2 / 2, where c = A072044(k-1)/A072045(k-1) for k >= 2.

A385138 The sum of divisors d of n such that n/d is a 5-rough number (A007310).

Original entry on oeis.org

1, 2, 3, 4, 6, 6, 8, 8, 9, 12, 12, 12, 14, 16, 18, 16, 18, 18, 20, 24, 24, 24, 24, 24, 31, 28, 27, 32, 30, 36, 32, 32, 36, 36, 48, 36, 38, 40, 42, 48, 42, 48, 44, 48, 54, 48, 48, 48, 57, 62, 54, 56, 54, 54, 72, 64, 60, 60, 60, 72, 62, 64, 72, 64, 84, 72, 68, 72
Offset: 1

Views

Author

Amiram Eldar, Jun 19 2025

Keywords

Crossrefs

The sum of divisors d of n such that n/d is: A001615 (squarefree), A002131 (odd), A069208 (powerful), A076752 (square), A129527 (power of 2), A254981 (cubefree), A244963 (nonsquarefree), A327626 (cube), A385134 (biquadratefree), A385135 (exponentially odd), A385136 (cubefull), A385137 (3-smooth), this sequence (5-rough), A385139 (exponentially 2^n).

Programs

  • Mathematica
    f[p_, e_] := If[p > 3, (p^(e+1) - 1)/(p - 1), p^e]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n), p, e); prod(i = 1, #f~, p = f[i,1]; e = f[i,2]; if(p > 3, (p^(e + 1) - 1)/(p - 1), p^e));}

Formula

a(n) = A064987(n)/A385137(n).
Multiplicative with a(p^e) = p^e if p <= 3, and (p^(e+1)-1)/(p-1) if p >= 5.
In general, the sum of divisors d of n such that n/d is q-rough (not divisible by a prime smaller than q) is multiplicative with a(p^e) = p^e if p <= q, and (p^(e+1)-1)/(p-1) if p > q.
Dirichlet g.f.: zeta(s-1) * zeta(s) * ((1 - 1/2^s) * (1 - 1/3^s)).
In general, the sum of divisors d of n such that n/d is q-rough has Dirichlet g.f.: zeta(s-1) * zeta(s) * Product_{p prime <= q} (1 - 1/q^s).
Sum_{k=1..n} a(k) ~ (Pi^2/18)*n^2.
In general, the sum of divisors d of n such that n/d is prime(k)-rough has an average order c * n^2 / 2, where c = zeta(2) * A072045(k-1)/A072044(k-1) for k >= 2.

A385139 The sum of divisors d of n such that n/d has exponents in its prime factorization that are all powers of 2 (A138302).

Original entry on oeis.org

1, 3, 4, 7, 6, 12, 8, 14, 13, 18, 12, 28, 14, 24, 24, 29, 18, 39, 20, 42, 32, 36, 24, 56, 31, 42, 39, 56, 30, 72, 32, 58, 48, 54, 48, 91, 38, 60, 56, 84, 42, 96, 44, 84, 78, 72, 48, 116, 57, 93, 72, 98, 54, 117, 72, 112, 80, 90, 60, 168, 62, 96, 104, 116, 84, 144
Offset: 1

Views

Author

Amiram Eldar, Jun 19 2025

Keywords

Crossrefs

The sum of divisors d of n such that n/d is: A001615 (squarefree), A002131 (odd), A069208 (powerful), A076752 (square), A129527 (power of 2), A254981 (cubefree), A244963 (nonsquarefree), A327626 (cube), A385134 (biquadratefree), A385135 (exponentially odd), A385136 (cubefull), A385137 (3-smooth), A385138 (5-rough), this sequence (exponentially 2^n).

Programs

  • Mathematica
    f[p_, e_] := p^e + Sum[p^(e - 2^k), {k, 0, Floor[Log2[e]]}]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i, 1]^f[i, 2] + sum(k = 0, logint(f[i, 2], 2), f[i, 1]^(f[i, 2]-2^k)));}

Formula

Multiplicative with a(p^e) = p^e + Sum_{k=0..floor(log_2(e))} p^(e-2^k).
a(n) <= A000203(n), with equality if and only if n is cubefree (A004709).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = Product_{p prime} (1 + (1-1/p)*(Sum_{k>=1} (Sum_{j=0..floor(log_2(k))} 1/p^(k+2^j)))) = 1.62194750148969761827... .

A332844 Dirichlet g.f.: zeta(s) * zeta(s-1) * zeta(2*s).

Original entry on oeis.org

1, 3, 4, 8, 6, 12, 8, 18, 14, 18, 12, 32, 14, 24, 24, 39, 18, 42, 20, 48, 32, 36, 24, 72, 32, 42, 44, 64, 30, 72, 32, 81, 48, 54, 48, 112, 38, 60, 56, 108, 42, 96, 44, 96, 84, 72, 48, 156, 58, 96, 72, 112, 54, 132, 72, 144, 80, 90, 60, 192, 62, 96, 112, 166, 84
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 26 2020

Keywords

Crossrefs

Cf. A000005, A000010, A000203, A010052, A046951, A076752 (Mobius transf.), A124315, A206369, A344442, A347090 (Dirichlet inverse).

Programs

  • Mathematica
    Table[Sum[Boole[IntegerQ[(n/d)^(1/2)]] DivisorSigma[1, d], {d, Divisors[n]}], {n, 1, 65}]
    nmax = 65; CoefficientList[Series[Sum[DivisorSigma[1, k] (EllipticTheta[3, 0, x^k] - 1)/2, {k, 1, nmax}], {x, 0, nmax}], x] // Rest
    f[p_, e_] := (2*p^(e + 3) - e*p^2 + e - If[OddQ[e], 3*p^2 - 1, 2*p^2 + 2*p - 2])/(2*(p - 1)*(p^2 - 1)); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]  (* Amiram Eldar, May 25 2025 *)
  • PARI
    A332844(n) = sumdiv(n,d, issquare(n/d) * sigma(d)); \\ Antti Karttunen, May 23 2021

Formula

G.f.: Sum_{k>=1} sigma(k) * (theta_3(x^k) - 1) / 2.
a(n) = Sum_{d|n} A076752(d).
a(n) = Sum_{d|n} A206369(n/d) * tau(d).
a(n) = Sum_{d|n} A010052(n/d) * sigma(d).
a(n) = Sum_{d|n} A124315(n/d) * phi(d).
a(n) = Sum_{d|n} A046951(n/d) * d.
a(p) = p + 1, where p is prime.
Sum_{k=1..n} a(k) ~ Pi^6 * n^2 / 1080. - Vaclav Kotesovec, Feb 26 2020
Multiplicative with a(p^e) = (2*p^(e+3) - e*p^2 + e - 3*p^2 + 1)/(2*(p-1)*(p^2-1)) if e is odd, and (2*p^(e+3) - e*p^2 + e - 2*p^2 - 2*p + 2)/(2*(p-1)*(p^2-1)) if e is even. - Amiram Eldar, May 25 2025

A327629 Expansion of Sum_{k>=1} x^(k*(k + 1)/2) / (1 - x^(k*(k + 1)/2))^2.

Original entry on oeis.org

1, 2, 4, 4, 5, 9, 7, 8, 12, 11, 11, 18, 13, 14, 21, 16, 17, 27, 19, 22, 29, 22, 23, 36, 25, 26, 36, 29, 29, 50, 31, 32, 44, 34, 35, 55, 37, 38, 52, 44, 41, 65, 43, 44, 64, 46, 47, 72, 49, 55, 68, 52, 53, 81, 56, 58, 76, 58, 59, 100, 61, 62, 87, 64, 65, 100, 67, 68, 92, 77
Offset: 1

Views

Author

Ilya Gutkovskiy, Sep 19 2019

Keywords

Comments

Sum of divisors d of n such that n/d is triangular number.

Crossrefs

Programs

  • Mathematica
    nmax = 70; CoefficientList[Series[Sum[x^(k (k + 1)/2)/(1 - x^(k (k + 1)/2))^2, {k, 1, nmax}], {x, 0, nmax}], x] // Rest
    a[n_] := DivisorSum[n, # &, IntegerQ[Sqrt[8 n/# + 1]] &]; Table[a[n], {n, 1, 70}]
  • PARI
    a(n)={sumdiv(n, d, if(ispolygonal(d,3), n/d))} \\ Andrew Howroyd, Sep 19 2019
    
  • Python
    from sympy import divisors
    from sympy.ntheory.primetest import is_square
    def A327629(n): return sum(n//d for d in divisors(n,generator=True) if is_square((d<<3)+1)) # Chai Wah Wu, Jun 07 2025

Formula

a(n) = Sum_{d|n} A010054(n/d) * d.
Showing 1-10 of 13 results. Next