cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 21 results. Next

A037213 Expansion of Sum_{n>=0} n*q^(n^2).

Original entry on oeis.org

0, 1, 0, 0, 2, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Keywords

Comments

Multiplicative with a(p^(2e)) = p^e, a(p^(2e+1)) = 0. - Mitch Harris, Jun 09 2005
a(n) is the square root of n if n is square, zero otherwise. - Carl R. White, May 23 2009
Möbius transform of A069290(n). - Wesley Ivan Hurt, Jul 09 2025

Crossrefs

Programs

  • Haskell
    a037213 n = if n == r ^ 2 then r else 0  where r = a000196 n
    a037213_list = zipWith (*) a010052_list a000196_list
    -- Reinhard Zumkeller, Nov 09 2012
    
  • Mathematica
    Table[If[IntegerQ[n^(1/2)], n^(1/2), 0], {n, 0, 100}] (* Geoffrey Critzer, Feb 21 2015 *)
  • PARI
    a(n) = if (issquare(n), sqrtint(n), 0); \\ Michel Marcus, Aug 21 2025

Formula

Dirichlet generating function: zeta(2*s-1). - Franklin T. Adams-Watters, Sep 11 2005
a(n) = sqrt(n) * floor( cos^2(Pi * sqrt(n)) ). - Carl R. White, May 23 2009
a(n) = A000196(n) * A010052(n). - Reinhard Zumkeller, Jan 27 2010
Sum_{k=1..n} a(k) ~ n/2. - Vaclav Kotesovec, Aug 19 2021
a(n) = A066839(n) - A070039(n). - Ridouane Oudra, Jun 24 2025
a(n) = Sum_{d|n} A069290(d) * mu(n/d). - Wesley Ivan Hurt, Jul 09 2025

A055155 a(n) = Sum_{d|n} gcd(d, n/d).

Original entry on oeis.org

1, 2, 2, 4, 2, 4, 2, 6, 5, 4, 2, 8, 2, 4, 4, 10, 2, 10, 2, 8, 4, 4, 2, 12, 7, 4, 8, 8, 2, 8, 2, 14, 4, 4, 4, 20, 2, 4, 4, 12, 2, 8, 2, 8, 10, 4, 2, 20, 9, 14, 4, 8, 2, 16, 4, 12, 4, 4, 2, 16, 2, 4, 10, 22, 4, 8, 2, 8, 4, 8, 2, 30, 2, 4, 14, 8, 4, 8, 2, 20, 17, 4, 2, 16, 4, 4, 4, 12, 2, 20, 4, 8, 4, 4
Offset: 1

Views

Author

Leroy Quet, Jul 02 2000

Keywords

Comments

a(n) is odd iff n is odd square. - Vladeta Jovovic, Aug 27 2002
From Robert Israel, Dec 26 2015: (Start)
a(n) >= A000005(n), with equality iff n is squarefree (i.e., is in A005117).
a(n) = 2 iff n is prime. (End)

Examples

			a(9) = gcd(1,9) + gcd(3,3) + gcd(9,1) = 5, since 1, 3, 9 are the positive divisors of 9.
		

Crossrefs

Programs

  • Maple
    N:= 1000: # to get a(1) to a(N)
    V:= Vector(N):
    for k from 1 to N do
       for j from 1 to floor(N/k) do
         V[k*j]:= V[k*j]+igcd(k,j)
       od
    od:
    convert(V,list); # Robert Israel, Dec 26 2015
  • Mathematica
    Table[DivisorSum[n, GCD[#, n/#] &], {n, 94}] (* Michael De Vlieger, Sep 23 2017 *)
    f[p_, e_] := If[EvenQ[e], (p^(e/2)*(p+1)-2)/(p-1), 2*(p^((e+1)/2)-1)/(p-1)]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Sep 30 2020 *)
  • PARI
    a(n) = sumdiv(n, d, gcd(d, n/d)); \\ Michel Marcus, Aug 03 2016
    
  • Python
    from sympy import divisors, gcd
    def A055155(n): return sum(gcd(d,n//d) for d in divisors(n,generator=True)) # Chai Wah Wu, Aug 19 2021

Formula

Multiplicative with a(p^e) = (p^(e/2)*(p+1)-2)/(p-1) for even e and a(p^e) = 2*(p^((e+1)/2)-1)/(p-1) for odd e. - Vladeta Jovovic, Nov 01 2001
Dirichlet g.f.: (zeta(s))^2*zeta(2s-1)/zeta(2s); inverse Mobius transform of A000188. - R. J. Mathar, Feb 16 2011
Dirichlet convolution of A069290 and A008966. - R. J. Mathar, Oct 31 2011
Sum_{k=1..n} a(k) ~ 3*n / (2*Pi^6) * (Pi^4 * log(n)^2 + ((8*g - 2)*Pi^4 - 24 * Pi^2 * z1) * log(n) + 2*Pi^4 * (1 - 4*g + 5*g^2 - 6*sg1) + 288 * z1^2 - 24 * Pi^2 * (-z1 + 4*g*z1 + z2)), where g is the Euler-Mascheroni constant A001620, sg1 is the first Stieltjes constant A082633, z1 = Zeta'(2) = A073002, z2 = Zeta''(2) = A201994. - Vaclav Kotesovec, Feb 01 2019
a(n) = (1/n)*Sum_{i=1..n} sigma(gcd(n,i^2)). - Ridouane Oudra, Dec 30 2020
a(n) = Sum_{k=1..n} gcd(gcd(n,k),n/gcd(n,k))/phi(n/gcd(n,k)), where phi = A000010. - Richard L. Ollerton, May 09 2021

A340774 Dirichlet g.f.: Sum_{n>0} a(n)/n^s = zeta(s-1) * zeta(2*s-1).

Original entry on oeis.org

1, 2, 3, 6, 5, 6, 7, 12, 12, 10, 11, 18, 13, 14, 15, 28, 17, 24, 19, 30, 21, 22, 23, 36, 30, 26, 36, 42, 29, 30, 31, 56, 33, 34, 35, 72, 37, 38, 39, 60, 41, 42, 43, 66, 60, 46, 47, 84, 56, 60, 51, 78, 53, 72, 55, 84, 57, 58, 59, 90, 61, 62, 84, 120, 65, 66, 67
Offset: 1

Views

Author

Werner Schulte, Jan 20 2021

Keywords

Crossrefs

Sequences of the form n^k * Sum_{d^2|n} 1/d^k for k =
0..10: A046951 (k=0), this sequence (k=1), A351600 (k=2), A351601 (k=3), A351602 (k=4), A351603 (k=5), A351604 (k=6), A351605 (k=7), A351606 (k=8), A351607 (k=9), A351608 (k=10).

Programs

  • Maple
    a:= n-> mul((i[1]^(i[2]+1)-i[1]^iquo(i[2]+1, 2))/(i[1]-1), i=ifactors(n)[2]):
    seq(a(n), n=1..77);  # Alois P. Heinz, Jan 20 2021
  • Mathematica
    f[p_, e_] := (p^(e + 1) - p^Floor[(e + 1)/2])/(p - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Jan 20 2021 *)
  • PARI
    A340774(n) = { my(f=factor(n)); prod(i=1, #f~, my(p=f[i,1], e=f[i,2]); ((p^(e+1)-(p^((e+1)\2))) / (p-1))); }; \\ Antti Karttunen, Aug 19 2021

Formula

Multiplicative with a(p^e) = (p^(e+1)-p^floor((e+1)/2))/(p-1).
Dirichlet convolution of A000010 and A069290.
Dirichlet convolution with A055615 equals A037213.
G.f.: Sum_{k>=1} k * x^(k^2) / (1 - x^(k^2))^2. - Ilya Gutkovskiy, Aug 19 2021
Sum_{k=1..n} a(k) ~ zeta(3)*n^2/2. - Vaclav Kotesovec, Aug 19 2021
a(n) = n * Sum_{d^2|n} 1/d. - Wesley Ivan Hurt, Feb 14 2022

A069291 Number of square divisors of n <= sqrt(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 14 2002

Keywords

Comments

Terms 1, 2, 3, ... occurs for the first time at 1, 16, 108, 288, 1296, 3600, 10368, 14400, ... - Antti Karttunen, Nov 20 2017

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[n, 1 &, And[IntegerQ@ Sqrt@ #, # <= Sqrt@ n] &], {n, 120}] (* Michael De Vlieger, Nov 20 2017 *)
  • PARI
    A069291(n) = sumdiv(n, d, (issquare(d)&&((d^2)<=n))); \\ Antti Karttunen, Nov 20 2017

Formula

G.f.: Sum_{k>=1} x^(k^4) / (1 - x^(k^2)). - Ilya Gutkovskiy, Apr 04 2020

Extensions

More terms from Antti Karttunen, Nov 20 2017

A069293 Sum of square divisors of n <= sqrt(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 10, 1, 1, 5, 1, 1, 1, 5, 1, 10, 1, 5, 1, 1, 1, 5, 1, 1, 10, 5, 1, 1, 1, 5, 1
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 14 2002

Keywords

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[n, # &, And[IntegerQ@ Sqrt@ #, # <= Sqrt@ n] &], {n, 105}] (* Michael De Vlieger, Nov 20 2017 *)
  • PARI
    A069293(n) = sumdiv(n, d, (issquare(d)&&((d^2)<=n))*d); \\ Antti Karttunen, Nov 20 2017

Formula

G.f.: Sum_{k>=1} k^2 * x^(k^4) / (1 - x^(k^2)). - Ilya Gutkovskiy, Apr 04 2020

Extensions

More terms from Antti Karttunen, Nov 20 2017

A333843 Expansion of g.f.: Sum_{k>=1} k * x^(k^3) / (1 - x^(k^3)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 4, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 4, 1, 3, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 4, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 4
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 07 2020

Keywords

Comments

Sum of cube roots of cube divisors of n.

Crossrefs

Programs

  • Mathematica
    nmax = 108; CoefficientList[Series[Sum[k x^(k^3)/(1 - x^(k^3)), {k, 1, Floor[nmax^(1/3)] + 1}], {x, 0, nmax}], x] // Rest
    Table[DivisorSum[n, #^(1/3) &, IntegerQ[#^(1/3)] &], {n, 108}]
    f[p_, e_] := (p^(Floor[e/3] + 1) - 1)/(p - 1); a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Dec 01 2020 *)
  • PARI
    a(n) = {my(f = factor(n)); prod(i=1, #f~, (f[i,1]^(f[i,2]\3 + 1) - 1)/(f[i,1] - 1));} \\ Amiram Eldar, Sep 05 2023

Formula

Dirichlet g.f.: zeta(s) * zeta(3*s-1).
If n = Product (p_j^k_j) then a(n) = Product ((p_j^(floor(k_j/3) + 1) - 1)/(p_j - 1)).
Sum_{k=1..n} a(k) ~ Pi^2*n/6 + zeta(2/3)*n^(2/3)/2. - Vaclav Kotesovec, Dec 01 2020
a(n) = A000203(A053150(n)) (the sum of divisors of the cube root of largest cube dividing n). - Amiram Eldar, Sep 05 2023

A069292 Sum of square roots of square divisors of n <= sqrt(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 4, 1, 1, 3, 1, 1, 1, 3, 1, 4, 1, 3, 1, 1, 1, 3, 1, 1, 4, 3, 1, 1, 1, 3, 1
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 14 2002

Keywords

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[n, Sqrt@ # &, And[IntegerQ@ Sqrt@ #, # <= Sqrt@ n] &], {n, 105}] (* Michael De Vlieger, Nov 20 2017 *)
  • PARI
    A069292(n) = { my(r="NA"); sumdiv(n, d, (issquare(d,&r)&&((d^2)<=n))*r); } \\ Antti Karttunen, Nov 20 2017

Formula

G.f.: Sum_{k>=1} k * x^(k^4) / (1 - x^(k^2)). - Ilya Gutkovskiy, Aug 19 2021

Extensions

More terms from Antti Karttunen, Nov 20 2017

A124316 a(n) = Sum_{d|n} sigma(gcd(d,n/d)), where sigma is the sum of divisors function, A000203.

Original entry on oeis.org

1, 2, 2, 5, 2, 4, 2, 8, 6, 4, 2, 10, 2, 4, 4, 15, 2, 12, 2, 10, 4, 4, 2, 16, 8, 4, 10, 10, 2, 8, 2, 22, 4, 4, 4, 30, 2, 4, 4, 16, 2, 8, 2, 10, 12, 4, 2, 30, 10, 16, 4, 10, 2, 20, 4, 16, 4, 4, 2, 20, 2, 4, 12, 37, 4, 8, 2, 10, 4, 8, 2, 48, 2, 4, 16, 10, 4, 8, 2, 30, 23, 4, 2, 20, 4, 4, 4, 16, 2, 24
Offset: 1

Views

Author

Robert G. Wilson v, Sep 30 2006

Keywords

Comments

Apparently multiplicative and the inverse Mobius transform of A069290. - R. J. Mathar, Feb 07 2011

Crossrefs

Programs

  • Maple
    A124316 := proc(n) local a,d;
      a := 0 ;
      for d in numtheory[divisors](n) do
         igcd(d,n/d) ;
         a := a+numtheory[sigma](%) ;
       end do:
       a;
    end proc: # R. J. Mathar, Apr 14 2011
  • Mathematica
    Table[Plus @@ Map[DivisorSigma[1, GCD[ #, n/# ]] &, Divisors@n], {n, 90}]
    f[p_, e_] := (If[OddQ[e], 2*p^((e+3)/2), p^(e/2 + 1)*(p+1)] - (e+3)*p + e + 1)/(p-1)^2; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Mar 28 2024 *)
  • PARI
    a(n) = sumdiv(n, d, sigma(gcd(d, n/d))); \\ Michel Marcus, Feb 13 2016
    
  • Python
    from sympy import divisors, divisor_sigma, gcd
    def a(n): return sum([divisor_sigma(gcd(d, n/d)) for d in divisors(n)]) # Indranil Ghosh, May 25 2017

Formula

From Amiram Eldar, Mar 28 2024: (Start)
Multiplicative with a(p^e) = (p^(e/2 + 1)*(p+1) - (e+3)*p + e + 1)/(p-1)^2, if e is even, and (2*p^((e+3)/2) - (e+3)*p + e + 1)/(p-1)^2 if e is odd.
Dirichlet g.f.: zeta(s)^2 * zeta(2*s-1).
Sum_{k=1..n} a(k) = (log(n)^2/4 + (2*gamma - 1/2)*log(n) + 5*gamma^2/2 - 2*gamma - 3*gamma_1 + 1/2) * n + O(n^(2/3)*log(n)^(16/9)), where gamma is Euler's constant (A001620) and gamma_1 is the first Stieltjes constant (A082633) (Krätzel et al., 2012). (End)

A333844 G.f.: Sum_{k>=1} k * x^(k^4) / (1 - x^(k^4)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 07 2020

Keywords

Comments

Sum of 4th roots of 4th powers dividing n.

Crossrefs

Programs

  • Mathematica
    nmax = 112; CoefficientList[Series[Sum[k x^(k^4)/(1 - x^(k^4)), {k, 1, Floor[nmax^(1/4)] + 1}], {x, 0, nmax}], x] // Rest
    Table[DivisorSum[n, #^(1/4) &, IntegerQ[#^(1/4)] &], {n, 112}]
    f[p_, e_] := (p^(Floor[e/4] + 1) - 1)/(p - 1); a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Dec 01 2020 *)

Formula

Dirichlet g.f.: zeta(s) * zeta(4*s-1).
If n = Product (p_j^k_j) then a(n) = Product ((p_j^(floor(k_j/4) + 1) - 1)/(p_j - 1)).
Sum_{k=1..n} a(k) ~ zeta(3)*n + zeta(1/2)*sqrt(n)/2. - Vaclav Kotesovec, Dec 01 2020

A344128 a(n) = Sum_{k=1..n} k * floor(n/k^2).

Original entry on oeis.org

1, 2, 3, 6, 7, 8, 9, 12, 16, 17, 18, 21, 22, 23, 24, 31, 32, 36, 37, 40, 41, 42, 43, 46, 52, 53, 57, 60, 61, 62, 63, 70, 71, 72, 73, 85, 86, 87, 88, 91, 92, 93, 94, 97, 101, 102, 103, 110, 118, 124, 125, 128, 129, 133, 134, 137, 138, 139, 140, 143, 144, 145, 149, 164, 165, 166
Offset: 1

Views

Author

Wesley Ivan Hurt, May 09 2021

Keywords

Crossrefs

Partial sums of A069290.
Cf. A013936.

Programs

  • Maple
    b:= n-> mul((i[1]^(iquo(i[2], 2)+1)-1)/(i[1]-1), i=ifactors(n)[2]):
    a:= proc(n) a(n):= a(n-1)+b(n) end: a(0):=0:
    seq(a(n), n=1..66);  # Alois P. Heinz, May 14 2021
  • Mathematica
    Table[Sum[k*Floor[n/k^2], {k, n}], {n, 100}]

Formula

G.f.: (1/(1 - x)) * Sum_{k>=1} k * x^(k^2) / (1 - x^(k^2)). - Ilya Gutkovskiy, May 14 2021
Showing 1-10 of 21 results. Next