cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A069291 Number of square divisors of n <= sqrt(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 14 2002

Keywords

Comments

Terms 1, 2, 3, ... occurs for the first time at 1, 16, 108, 288, 1296, 3600, 10368, 14400, ... - Antti Karttunen, Nov 20 2017

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[n, 1 &, And[IntegerQ@ Sqrt@ #, # <= Sqrt@ n] &], {n, 120}] (* Michael De Vlieger, Nov 20 2017 *)
  • PARI
    A069291(n) = sumdiv(n, d, (issquare(d)&&((d^2)<=n))); \\ Antti Karttunen, Nov 20 2017

Formula

G.f.: Sum_{k>=1} x^(k^4) / (1 - x^(k^2)). - Ilya Gutkovskiy, Apr 04 2020

Extensions

More terms from Antti Karttunen, Nov 20 2017

A333751 Sum of nonprime divisors of n that are <= sqrt(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 11, 1, 1, 1, 5, 1, 7, 1, 5, 1, 1, 1, 11, 1, 1, 1, 5, 1, 7, 1, 5, 1, 1, 1, 11, 1, 1, 1, 13, 1, 7, 1, 5, 1, 1, 1, 19, 1, 1, 1, 5, 1, 7, 1, 13, 10, 1, 1, 11, 1, 1, 1, 13, 1, 16
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 03 2020

Keywords

Crossrefs

Programs

  • Maple
    f:= proc(n) convert(select(t -> not isprime(t) and t^2 <= n, numtheory:-divisors(n)),`+`) end proc:
    map(f, [$1..100]); # Robert Israel, Sep 12 2024
  • Mathematica
    Table[DivisorSum[n, # &, # <= Sqrt[n] && !PrimeQ[#] &], {n, 1, 90}]
    nmax = 90; CoefficientList[Series[Sum[Boole[!PrimeQ[k]] k x^(k^2)/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
  • PARI
    a(n) = sumdiv(n, d, if ((d^2<=n) && !isprime(d), d)); \\ Michel Marcus, Apr 03 2020

Formula

G.f.: Sum_{k>=1} A018252(k) * x^(A018252(k)^2) / (1 - x^A018252(k)).

A333753 Sum of prime power divisors of n that are <= sqrt(n).

Original entry on oeis.org

0, 0, 0, 2, 0, 2, 0, 2, 3, 2, 0, 5, 0, 2, 3, 6, 0, 5, 0, 6, 3, 2, 0, 9, 5, 2, 3, 6, 0, 10, 0, 6, 3, 2, 5, 9, 0, 2, 3, 11, 0, 5, 0, 6, 8, 2, 0, 9, 7, 7, 3, 6, 0, 5, 5, 13, 3, 2, 0, 14, 0, 2, 10, 14, 5, 5, 0, 6, 3, 14, 0, 17, 0, 2, 8, 6, 7, 5, 0, 19, 12, 2, 0, 16, 5, 2, 3, 14, 0, 19
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 03 2020

Keywords

Crossrefs

Programs

  • Maple
    f:= proc(n) local F,i,j,t;
      F:= ifactors(n)[2];
      t:= 0;
      for i from 1 to nops(F) do
        j:= min(F[i,2],ilog[F[i,1]^2](n));
        t:= t + (F[i,1]^j-1)*F[i,1]/(F[i,1]-1)
      od;
      t
    end proc:
    map(f, [$1..100]); # Robert Israel, Feb 15 2023
  • Mathematica
    Table[DivisorSum[n, # &, # <= Sqrt[n] && PrimePowerQ[#] &], {n, 1, 90}]
    nmax = 90; CoefficientList[Series[Sum[Boole[PrimePowerQ[k]] k x^(k^2)/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
  • PARI
    a(n) = sumdiv(n, d, if ((d^2<=n) && isprimepower(d), d)); \\ Michel Marcus, Apr 03 2020

Formula

G.f.: Sum_{p prime, k>=1} p^k * x^(p^(2*k)) / (1 - x^(p^k)).

A069292 Sum of square roots of square divisors of n <= sqrt(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 4, 1, 1, 3, 1, 1, 1, 3, 1, 4, 1, 3, 1, 1, 1, 3, 1, 1, 4, 3, 1, 1, 1, 3, 1
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 14 2002

Keywords

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[n, Sqrt@ # &, And[IntegerQ@ Sqrt@ #, # <= Sqrt@ n] &], {n, 105}] (* Michael De Vlieger, Nov 20 2017 *)
  • PARI
    A069292(n) = { my(r="NA"); sumdiv(n, d, (issquare(d,&r)&&((d^2)<=n))*r); } \\ Antti Karttunen, Nov 20 2017

Formula

G.f.: Sum_{k>=1} k * x^(k^4) / (1 - x^(k^2)). - Ilya Gutkovskiy, Aug 19 2021

Extensions

More terms from Antti Karttunen, Nov 20 2017

A333752 Sum of squarefree divisors of n that are <= sqrt(n).

Original entry on oeis.org

1, 1, 1, 3, 1, 3, 1, 3, 4, 3, 1, 6, 1, 3, 4, 3, 1, 6, 1, 3, 4, 3, 1, 6, 6, 3, 4, 3, 1, 11, 1, 3, 4, 3, 6, 12, 1, 3, 4, 8, 1, 12, 1, 3, 9, 3, 1, 12, 8, 8, 4, 3, 1, 12, 6, 10, 4, 3, 1, 17, 1, 3, 11, 3, 6, 12, 1, 3, 4, 15, 1, 12, 1, 3, 9, 3, 8, 12, 1, 8, 4, 3, 1, 19, 6, 3, 4, 3, 1, 17
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 03 2020

Keywords

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[n, # &, # <= Sqrt[n] && SquareFreeQ[#] &], {n, 1, 90}]
    nmax = 90; CoefficientList[Series[Sum[MoebiusMu[k]^2 k x^(k^2)/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
  • PARI
    a(n) = sumdiv(n, d, if ((d^2<=n) && issquarefree(d), d)); \\ Michel Marcus, Apr 03 2020

Formula

G.f.: Sum_{k>=1} mu(k)^2 * k * x^(k^2) / (1 - x^k).
Showing 1-5 of 5 results.