cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A333750 Number of prime power divisors of n that are <= sqrt(n).

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 2, 0, 1, 1, 2, 0, 2, 0, 2, 1, 1, 0, 3, 1, 1, 1, 2, 0, 3, 0, 2, 1, 1, 1, 3, 0, 1, 1, 3, 0, 2, 0, 2, 2, 1, 0, 3, 1, 2, 1, 2, 0, 2, 1, 3, 1, 1, 0, 4, 0, 1, 2, 3, 1, 2, 0, 2, 1, 3, 0, 4, 0, 1, 2, 2, 1, 2, 0, 4, 2, 1, 0, 4, 1, 1, 1, 3, 0, 4, 1, 2, 1, 1, 1, 4, 0, 2, 2, 3
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 03 2020

Keywords

Crossrefs

Programs

  • Maple
    f:= proc(n) local p;
      add(min(padic:-ordp(n,p),floor(1/2*log[p](n))),p=numtheory:-factorset(n))
    end proc:
    map(f, [$1..200]); # Robert Israel, Apr 22 2020
  • Mathematica
    Table[DivisorSum[n, 1 &, # <= Sqrt[n] && PrimePowerQ[#] &], {n, 1, 100}]
    nmax = 100; CoefficientList[Series[Sum[Boole[PrimePowerQ[k]] x^(k^2)/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
  • PARI
    a(n) = sumdiv(n, d, (d^2<=n) && isprimepower(d)); \\ Michel Marcus, Apr 03 2020

Formula

G.f.: Sum_{p prime, k>=1} x^(p^(2*k)) / (1 - x^(p^k)).

A333751 Sum of nonprime divisors of n that are <= sqrt(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 11, 1, 1, 1, 5, 1, 7, 1, 5, 1, 1, 1, 11, 1, 1, 1, 5, 1, 7, 1, 5, 1, 1, 1, 11, 1, 1, 1, 13, 1, 7, 1, 5, 1, 1, 1, 19, 1, 1, 1, 5, 1, 7, 1, 13, 10, 1, 1, 11, 1, 1, 1, 13, 1, 16
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 03 2020

Keywords

Crossrefs

Programs

  • Maple
    f:= proc(n) convert(select(t -> not isprime(t) and t^2 <= n, numtheory:-divisors(n)),`+`) end proc:
    map(f, [$1..100]); # Robert Israel, Sep 12 2024
  • Mathematica
    Table[DivisorSum[n, # &, # <= Sqrt[n] && !PrimeQ[#] &], {n, 1, 90}]
    nmax = 90; CoefficientList[Series[Sum[Boole[!PrimeQ[k]] k x^(k^2)/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
  • PARI
    a(n) = sumdiv(n, d, if ((d^2<=n) && !isprime(d), d)); \\ Michel Marcus, Apr 03 2020

Formula

G.f.: Sum_{k>=1} A018252(k) * x^(A018252(k)^2) / (1 - x^A018252(k)).

A333752 Sum of squarefree divisors of n that are <= sqrt(n).

Original entry on oeis.org

1, 1, 1, 3, 1, 3, 1, 3, 4, 3, 1, 6, 1, 3, 4, 3, 1, 6, 1, 3, 4, 3, 1, 6, 6, 3, 4, 3, 1, 11, 1, 3, 4, 3, 6, 12, 1, 3, 4, 8, 1, 12, 1, 3, 9, 3, 1, 12, 8, 8, 4, 3, 1, 12, 6, 10, 4, 3, 1, 17, 1, 3, 11, 3, 6, 12, 1, 3, 4, 15, 1, 12, 1, 3, 9, 3, 8, 12, 1, 8, 4, 3, 1, 19, 6, 3, 4, 3, 1, 17
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 03 2020

Keywords

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[n, # &, # <= Sqrt[n] && SquareFreeQ[#] &], {n, 1, 90}]
    nmax = 90; CoefficientList[Series[Sum[MoebiusMu[k]^2 k x^(k^2)/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
  • PARI
    a(n) = sumdiv(n, d, if ((d^2<=n) && issquarefree(d), d)); \\ Michel Marcus, Apr 03 2020

Formula

G.f.: Sum_{k>=1} mu(k)^2 * k * x^(k^2) / (1 - x^k).
Showing 1-3 of 3 results.