A113070 Expansion of ((1+x)/(1-2x))^2.
1, 6, 21, 60, 156, 384, 912, 2112, 4800, 10752, 23808, 52224, 113664, 245760, 528384, 1130496, 2408448, 5111808, 10813440, 22806528, 47972352, 100663296, 210763776, 440401920, 918552576, 1912602624, 3976200192, 8254390272, 17112760320
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-4).
Crossrefs
Cf. A113071.
Programs
-
Magma
[3*2^n*(3*n+1)/4+0^n/4: n in [0..30]]; // Vincenzo Librandi, May 21 2011
-
Mathematica
Join[{1},LinearRecurrence[{4,-4},{6,21},30]] (* or *) CoefficientList[ Series[((1+x)/(1-2x))^2,{x,0,30}],x] (* Harvey P. Dale, May 20 2011 *)
Formula
G.f.: (1+x)^2/(1-2x)^2;
a(n) = 3*2^n(3n+1)/4 + 0^n/4;
a(n) = Sum_{k=0..n} C(n, k)*Sum_{j=0..k} (j+1)*3^j.
a(n) = 4*a(n-1) - 4*a(n-2); a(0)=1, a(1)=6, a(2)=21. - Harvey P. Dale, May 20 2011
Comments