cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A113070 Expansion of ((1+x)/(1-2x))^2.

Original entry on oeis.org

1, 6, 21, 60, 156, 384, 912, 2112, 4800, 10752, 23808, 52224, 113664, 245760, 528384, 1130496, 2408448, 5111808, 10813440, 22806528, 47972352, 100663296, 210763776, 440401920, 918552576, 1912602624, 3976200192, 8254390272, 17112760320
Offset: 0

Views

Author

Paul Barry, Oct 14 2005

Keywords

Comments

Binomial transform is A014915. In general, ((1+x)/(1-r*x))^2 expands to a(n) = ((r+1)*r^n*((r+1)*n + r - 1) + 0^n)/r^2, which is also a(n) = Sum_{k=0..n} C(n,k)*Sum_{j=0..k} (j+1)*(r+1)^j. This is the self-convolution of the coordination sequence for the infinite tree with valency r.

Crossrefs

Cf. A113071.

Programs

  • Magma
    [3*2^n*(3*n+1)/4+0^n/4: n in [0..30]]; // Vincenzo Librandi, May 21 2011
  • Mathematica
    Join[{1},LinearRecurrence[{4,-4},{6,21},30]] (* or *) CoefficientList[ Series[((1+x)/(1-2x))^2,{x,0,30}],x] (* Harvey P. Dale, May 20 2011 *)

Formula

G.f.: (1+x)^2/(1-2x)^2;
a(n) = 3*2^n(3n+1)/4 + 0^n/4;
a(n) = Sum_{k=0..n} A003945(k)*A003945(n-k);
a(n) = Sum_{k=0..n} C(n, k)*Sum_{j=0..k} (j+1)*3^j.
a(n) = 4*a(n-1) - 4*a(n-2); a(0)=1, a(1)=6, a(2)=21. - Harvey P. Dale, May 20 2011