A113106 Triangle T, read by rows, that satisfies the recurrence: T(n,k) = [T^5](n-1,k-1) + [T^5](n-1,k) for n>k>=0, with T(n,n)=1 for n>=0, where T^5 is the matrix 5th power of T.
1, 1, 1, 5, 6, 1, 85, 115, 31, 1, 4985, 7420, 2590, 156, 1, 1082905, 1744965, 723370, 62090, 781, 1, 930005021, 1601759426, 752616215, 82390620, 1532715, 3906, 1, 3306859233805, 6024941167511, 3117415999361, 409321203715, 10025307495
Offset: 0
Examples
Triangle begins: 1; 1,1; 5,6,1; 85,115,31,1; 4985,7420,2590,156,1; 1082905,1744965,723370,62090,781,1; 930005021,1601759426,752616215,82390620,1532715,3906,1; Matrix 4th power T^4 (A113112) begins: 1; 4,1; 56,24,1; 2704,1576,124,1; 481376,346624,39376,624,1; ... where column 0 equals A113113. Matrix 5th power T^5 (A113114) begins: 1; 5,1; 85,30,1; 4985,2435,155,1; 1082905,662060,61310,780,1; 930005021,671754405,80861810,1528810,3905,1; ... where adjacent sums in row n of T^5 forms row n+1 of T.
Crossrefs
Programs
-
PARI
{T(n,k)=local(M=matrix(n+1,n+1));for(r=1,n+1, for(c=1,r, M[r,c]=if(r==c,1,if(c>1,(M^5)[r-1,c-1])+(M^5)[r-1,c]))); return(M[n+1,k+1])}
Formula
Let GF[T] denote the g.f. of triangular matrix T. Then GF[T] = 1 + x*(1+y)*GF[T^5] and for all integer p>=1: GF[T^p] = 1 + x*Sum_{j=1..p} GF[T^(p+4*j)] + x*y*GF[T^(5*p)].
Comments